
Creating Cost
Efficient Software

W
H

IT
EP

AP
ER

2

Audience	 2	
Introduction	 3
Chapter 1 Every Line of Code Costs	 5
Chapter 2: Code to Match the Workload	 9
Chapter 3: Efficiency is Just Performance, Right?	 14
Chapter 4: When Do I Optimise?	 17
Chapter 5: What Shall I Code In?	 19
Chapter 6: Code to Avoid Wastage	 22
Chapter 7: Getting the Algorithm Right	 26
Chapter 8: Crafting Cost Efficient Code	 30
Chapter 9: Checking You Are Getting It Right	 35
Chapter 10: Checking You Got It Right? You Won’t 	 38
Chapter 11: What About the Soft Costs?	 41
Chapter 12: Making It Stick	 44
Conclusion	 47

Index

3

This white paper is aimed at those responsible for architecting and writing software that will
run in the cloud.

Audience

4

“The cloud is just someone else’s computer, but it is a rental computer.”

Let’s get straight to the point; the code you
write for software deployed in the cloud directly
impacts the monthly cloud bill. There was a much
looser relationship in the past when hardware
was on-premises. The hardware had been
purchased years ago, and unless your software
changes meant there was a need to buy more
servers, nobody cared. In fact, the infrastructure
manager probably liked you to use their hardware
as it justified their decision to buy it all. Now,
however, if a resource is over or underused, it
directly relates to the monthly cloud bill.

The wildest days of the cloud have gone, with
companies rushing to the cloud as the next big
thing. The giddiness of the new technology has
been replaced with the dark reality of expensive
monthly bills with too many unpredictable spikes
in cost. There are many news stories of an
exodus back to on-premises data centres, but
when you read the details, they are about specific
workloads and business cases.

The reality is that the cloud is here to stay, and
it is now about making sure you design, code
and operate your applications to maximise the

benefits of the cloud to produce cost-efficient
services.

The cloud is naturally cheaper,
right?

Here is a quick calculation: Take the c6id family
of AWS instances that use the Intel(R) Xeon(R)
Platinum 8375C CPU @ 2.90GHz. This is a 64vCPU
processor, so that would map to the c6id.16xlarge
instance that costs $11.8k per year if you commit
to three years. Over 5 years, the TCO would be
$59K. For the on-premises costs, the processor
costs $8,000 to $10,000 when new, and let’s put
that in a server with 128G of memory that will
cost about $12K and then your cost to rack and
stack that server per year is about $1K per year.
Assume after 5 years the server is worthless, then
you are $17K down. Now, there are other costs
like finance and support costs, but let’s consider
the TCO, which could be around $25K. Of course,
if you used that compute power for just one day
out of the 5 years, then AWS would have cost
you $77 compared to $25,000 for running on-
premises.

Introduction

5

So, depending on your hosting and support costs, you could probably buy and run a server cheaper than
committing to buying the same level of compute through a primary cloud provider. Hence, the challenge is
to make the move to the cloud worth it. What this illustrates is you must have processes in place to manage
capacity and develop your software to maximise what the cloud offers.

Now, it is not only the responsibility
of the software engineer to efficiently
control costs. Just like regular software
design, the business must accurately
provide inputs, such as the expected
workload into the system. By the way,
the workload is more than just the
number of users or transactions per
second; it also has a shape, particularly
how the demand varies over the day,
week, year, etc. The shape of the
demand curve makes a big difference
in the decision you need to make as
a software engineer. Finally, let’s not
forget the response time requirements
we give the users.

I am sure you have heard the phrase the
cloud is just someone else’s computer.
To me, that is the challenge and
opportunity of the cloud. Think of it as
a rental car; it is just someone else’s
car, and the world of possibilities opens
up. You could probably pay less over
five years to own your own car versus

having a rental for all that time.
But you don’t have to rent that car for five years, you could have two cars when you need them, none when you
don’t. You could take the bus when you are not in a rush or take a plane when you are.

To write a cost-effective system, you need to remember your compute resource is a rental transport solution. You
get a discount for committing long-term, and you can flex or even have fancy services. This is where you have the
opportunity with the cloud to make it cost-efficient.

As software developers, it is not just about writing efficient code but also maximising the benefits of having rental
computers.

This white paper will help you think about and plan for writing cost-efficient software. It will examine both the
software architecture design, as well as look at the more detailed code level.
But first, let’s start with the money.

6

Chapter 1
Every Line of Code Costs

“Price is what you pay. Value is
what you get.”

– Warren Buffett

 https://www.crn.com/news/cloud/2024/aws-vs-microsoft-vs-google-cloud-earnings-q4-2023-face-off?page=2

Of course, everything costs. In 2023,
AWS generated a total of $90.8 billion
in sales, Google Cloud $33.7 billion and
Microsoft $96.8 billion in sales.

In this chapter, I provide some basic
information about some of the cloud
services and their costs. It is important
that you start to think about the choice
of cloud service for your software
design, as this starts to have a major
impact on the cost.

Take, for example, storage of
documents which in the past may have
been held in the database. They may be
stored more cheaply in object storage
in cloud using object storage (S3, etc).
However, you will see you need to
consider all parts of the billing model to
determine if that is the best choice.

Below are some general costs based
on typical cloud service pricing (from
providers like AWS, Azure, and Google
Cloud). Please note that actual costs
can vary depending on the provider,
region, discount and length of
commitment:

7

For more accurate costs, it’s recommended you
use a cloud provider’s pricing calculator like
AWS Pricing Calculator, Google Cloud Pricing
Calculator, or Azure’s Pricing tool.
Alas, the cost model for service providers is not
purely one-dimensional, e.g. priced on data
stored. The cost varies depending on the service
level offered and other factors, such as the
frequency and type of accesses to that data.

Take for example object storage like S3.

1. Storage costs

This is the base cost, which typically depends on
the amount of data stored per GB. For example,
AWS S3 charges around $0.023 per GB per month
for standard storage, with lower rates for archival
tiers like S3 Glacier or S3 Glacier Deep Archive.

2. Data retrieval and access

	■ Frequency of Access: If you’re frequently
accessing data, especially in large volumes,

you’ll incur additional charges. Different S3
storage classes are designed for different access
patterns:

	 o	 S3 Standard is optimised for frequent 	
		 access, but if you choose S3 Infrequent 	
		 Access (IA) or S3 Glacier, you pay lower 	
		 storage fees but higher retrieval costs 	
		 when you access the data.

	■ Data Access Types: Costs also depend on
the type of operation.:

	 o	 GET requests (retrieving data): Every time 	
		 you read an object from S3, it counts as 	
		 an API request. With millions or billions of 	
		 small files, these costs can add up, as 	
		 you’re billed per 1,000 requests (about 	
		 $0.005).

	■ PUT, COPY, POST, DELETE requests 	
		 (modifying or uploading data):

	 o	 Similarly, you incur charges every time 	
		 you upload or modify data, even though 	
		 these operations might be cheaper than 	
		 GET requests (about $0.0004 per 1,000 	
		 requests).

Item Estimated Cost

4CPU Compute Optimized $0.10 to $0.20 per hour

4CPU Memory Optimized $0.15 to $0.25 per hour

Storage of 1GB on Fast Disk (SSD) $0.10 to $0.20 per GB per month

Storage of 1GB of S3 (Object Storage) $0.023 per GB per month (AWS S3 standard storage)

Egress Network Traffic (Per GB) $0.08 to $0.12 per GB

Single Call to a Serverless Function (0.5 sec) $0.0000002 per invocation (AWS Lambda)

Monthly Cost for a Publicly Available IP Address $3 to $5 per month

Storing a 1GB Log File $0.03 to $0.10 per GB per month (depending on
retention period)

Storing a Custom Metric $0.30 to $0.50 per metric per month

8

8

3. Data transfer (egress costs)

Moving data out of S3 to the internet (egress
traffic) is not free and can add a significant cost,
especially if you’re serving large files to external
users. S3 has a data transfer pricing model where
you are charged for each GB moved out of the
storage bucket to other AWS services, external
networks, or even other regions.

4. Lifecycle transitions

S3 offers the ability to automatically transition
objects between storage classes (e.g., from S3
Standard to Glacier) based on usage patterns,
but these transitions are not free. Lifecycle
management can incur costs if there are frequent
transitions.

5. Request and metadata overhead

Along with data retrieval, the storage cost also
involves charges for list requests, metadata
retrievals, and even checking the existence of
objects in a bucket. Each interaction with the
storage, even for simple metadata requests,
counts toward the number of operations billed.

6. Multipart uploads and unused data

For large files, multipart uploads are used to
upload data in parts. If a multipart upload fails to
complete, the stored parts are charged as separate
objects unless manually deleted.

When it comes to compute resources, remember that the cloud is someone else’s computer, a rental and flexible
one.

9

1.	 Serverless (Lambda): Pay only for exact
execution time. Ideal for infrequent workloads
or scaling on-demand with minimal
management. You’re charged per millisecond,
which eliminates the need to maintain servers
constantly.
	o	 Cost model: Pay per invocation, great for 	
		 event-driven applications.

2.	 	EC2 On-Demand: Instant access to compute
capacity with no long-term commitment.
Perfect for unpredictable workloads where
flexibility is key.
o	 Cost model: Pay-per-hour (or second), 	
		 higher flexibility, but at a premium 	
		 compared to reserved models.

3.	 EC2 Reserved Instances: For workloads
you know will run continuously, 1 or 3-year
reservations can lead to significant savings
(up to 72%). You trade upfront commitment
for lower long-term costs.
o	 Cost model: Discounted hourly rates in 	
		 exchange for term commitment.

EC2 Spot Instances: Get unused compute
capacity at up to 90% off. Spot instances are great
for fault-tolerant workloads or batch processing
that can handle interruptions

However, the trade-off is the uncertainty of
availability.
o	 Cost model: Extremely low cost, but your 	
	 instance can be terminated if AWS needs 	
	 the capacity back.

If you design part of your software to be easily
interrupted and restarted you could save big by
using spot instances. Or if you get massive, short
spikes in demand, maybe you need Lambda.

Not understanding how services are
costed can lead to unexpected spikes in
the bill. In his article, software engineer
Maciej Pocwierz tells of how an S3 bucket
unexpectedly had a massive spike in cloud
costs due to unexpected (and, in this case,
unauthorised) requests to the S3 bucket.

If you are not getting value from the
service you are using, choose a different
service. For example, imagine you have
to store loads of user documents that are
produced from survey taking; needed but
rarely retrieved. Don’t put these in a cloud
database. Put them in object storage like
S3. Typically, it is 10x cheaper as long as you
are not frequently accessing them.

Cloud purchasing models

Cautionary Tale Golden Rule

10

Chapter 2
Code to Match the Workload

With the cloud, everything costs. But remember,
we are thinking about these computers as rentals.
There are many different service models you can
choose from. The trick is to choose the right model
for the workload. What do we mean by workload?
This is the profile of the demand arriving at your
system over time.

Systems experience various types of workload
arrival patterns, each driven by user behaviour,
time of day, and specific events. One common
pattern is the daily workload cycle, where system
activity fluctuates within a 24-hour period. Such
workloads often peak at predictable times, such
as just before and after lunch, when users engage
in routine activities like email checks, data entries,
or report generation. These systems might show a
lull in activity during mealtimes or late at night. An
example would be corporate systems or websites
with regular business hours that see most of their
traffic between 9 AM and 5 PM.

Another distinct pattern is a spiky or bursty
workload, which features sudden, intense spikes
in activity at specific intervals. These spikes are
often associated with special events, such as ticket

sales, product launches, or flash sales, where
thousands or millions of users try to access the
system simultaneously within a short time frame.
These systems require robust scaling capabilities
to handle the abrupt surges in traffic without
overloading. Conversely, some systems may
experience a constant or steady workload, where
the load remains relatively uniform throughout
the day. These systems are typically used for
services that need to be accessible around the
clock, such as public APIs or monitoring systems.

Seasonal workloads represent yet another
category. These systems show pronounced activity
peaks at certain times of the year. For instance, an
online tax-filing system would see minimal usage
for most of the year but experience a dramatic
increase in traffic leading up to the tax submission
deadline. Similarly, retail systems experience
heightened activity during holiday seasons like
Black Friday or Christmas. Understanding these
patterns helps in designing systems that can scale
dynamically to handle varying loads, ensuring
optimal performance and user experience.

“Assumptions are the termites of relationships.”

– Henry Winkler, Actor

11

Consider this example when it comes to even
vs. spiky workloads, with prices based on AWS.
Assume you need to process 1,123,200 requests
per day. If the requests arrive evenly, you can
benefit from purchasing an EC2 Reserved
Instance. But if the workload is spiky, a serverless
approach like AWS Lambda might be more cost-
effective.

Example Calculation

You have an API request that takes 1 second and
uses 1 CPU second along with 512MB of memory.

Compute Instance

For an even workload, that’s 46,800 transactions
per hour. Since each transaction takes 1 CPU
second, that equals 46,800 CPU seconds per
hour. A 16vCPU instance provides 57,600 CPU
seconds per hour (16 * 3,600), which results in
80% utilisation — near the optimal performance
threshold before degradation occurs. In this case,

you’ve hit the sweet spot.
AWS offers a 16vCPU/32GB Graviton instance for
$8.40/day as a Reserved Instance (with a one-year
commitment).

Serverless Option

With AWS Lambda, the cost is based on memory
usage and duration, plus a fee per transaction.
A single 512MB, one-second request costs
$0.0000067, and for 1,123,200 daily transactions,
the total cost is $7.73, including a $0.20 fee per
million requests.

Surprisingly, Lambda is competitively priced in
this scenario, compared to an even workload
running on a Reserved Instance.

When accounting for spiky workloads using On-
Demand and Reserved Instances, I’ve estimated
the use of 24 x 16vCPU boxes for simplicity. As
expected, Lambda comes out as the winner for
spiky workloads.

This doesn’t mean compute instances are obsolete, and you shouldn’t always default to Lambda. The billing
model is complex, and I haven’t included storage or network costs. But it’s interesting to see how costs change
when the API becomes more memory-intensive with daily cost being $14.94 at 1024MB and $29.99 at 2048MB.

Even versus spiky workloads – putting them
into context

Arrival Pattern Compute Daily Cost

Even Arrival 1x 16vCPU Reserved Instance $8.40

Even Arrival Lambda @512MB $7.73

Spike Arrival Lambda @512MB $7.73

Spike Arrival 24x 16vCPU On-Demand $13.20

Spike Arrival 24x 16vCPU Reserved Instances $201.60

12

The above example shows the importance of mapping the right service to the
workload. Understanding what services will be your biggest cost drivers is also
important. Once you know these, you can focus on them to make sure you
are picking the appropriate services and solutions to efficiently control your
costs. Of course, the earlier you can identify the cost driver, the better you are
at controlling them. Unfortunately, early in the project, there are often many
unknowns and assumptions.

However, Cost Per Active User = Cloud Costs
				 Number of Actice Users

it is always worth doing a bit of napkin math when making architectural
decisions. Of course, I am a number geek, so I will often use Excel (see next page).
Remember, each project is different.

What am I designing to?

13

Network Monthly Unit Cost Units Total

Egress (Data out of the cloud) 2000 0.05 GB 100

Inter-Region (Geo - Regions) 1000 0.02 GB 20

Inter-Zone (Transfer across availability zones) 500 0.01 GB 5

Static Costs (IP costs, etc)

Compute

Serverless 10000000 0.000007 Invocations 70

On-Demand

Compute Optimised 40 25.92 per CPU 1,037

Memory Optimised 40 38.88 per CPU 1,555

Reserved/Saving Plan (Typically 30% cheaper)

Compute Optimised 80 18.144 per CPU 1,452

Memory Optimised 120 27.216 per CPU 3,266

Spot Instances (Typically 70% cheaper)

Compute Optimised 7776 per CPU 0

Memory Optimised 11664 per CPU 0

Storage

Object Storage 5000 0.005 per GB 25

Block Storage (SSD, HDD) 10000 0.1 per GB 1000

Really Really Fast Storage 5000 0.4 per GB 2000

File Storage/Backup 75000 0.2 per GB 15000

Access Costs (10% of Storage)

Other

Very project dependent...

Total PCM 25,529

14

As a rule of thumb, the ratio should be 50% compute, 30% storage, 10% network, and 10% other.

These calculations just need to be rough. This is about getting you into the mindset of understanding what
drives your costs and where you may need to look to optimise. For example, you discover your storage costs are
significant, so think: Are you using the most appropriate cloud service to store your data? Can you reduce the
data size, etc.?

A customer redesigned their software to
automatically scale compute resources with
demand. However, their workload demand
was pretty static during the working week
and minimal at the weekend. They could
have saved that effort if they had just written
a script to turn off some computers at the
weekend!

Do rough cost calculations early in the
project to help steer the architectural
decisions. Don’t get sidetracked by trying to
make these overly accurate. This is all about
identifying major cost drivers and making
sure you are making appropriate cost-
saving architectural decisions.

Cautionary Tale Golden Rule

15

Chapter 3
Efficiency is Just Performance, Right?

Surely, performance
and efficiency are
the same?

Let’s start at the beginning. Performance is a
broad term, which many people often associate
solely with speed (i.e., “Is it fast enough?”).
However, there are more elements involved, and
it’s crucial to consider how the system reacts
under different workload levels. For example,
users might experience good response times when
there are only a few users, but the system may
become significantly slower when many people
are using it simultaneously.

The early bird may get the worm, but the second mouse gets the cheese!

16

In principle, software performance refers to “how
well the software runs” and consists of four core
execution elements that you can either improve or
sacrifice:

	■ Accuracy: The number of errors that
occur while executing a task. A system that
quickly returns HTTP 500 errors is not a high-
performance system.

	■ Speed: How fast the work is done to
complete a task. This can be observed in terms
of response times or throughput. Response
time refers to the time taken to execute a task,
while throughput indicates the number of tasks

completed per time unit.
	■ Efficiency: A measure of the resources

used to complete a task. If one sorting
algorithm takes 5 CPU seconds compared to
another that takes 50 seconds, the first is more
efficient. You must remember that efficiency in
relation to cost has multiple dimensions, such
as CPU, memory, and network usage, all of
which have associated costs.

	■ Scalability: The ability of the system to
handle an increased volume of workload.

This is generally true. The fewer resources you use,
the quicker the code will execute. However, this
is not always the case — sometimes, we sacrifice
efficiency to improve speed. For example, we
might cache results to reduce response times, but
this could negatively impact memory efficiency.

Next, you need to consider how to maximise your
resources. There’s little point in optimising code to
use less CPU, for example, unless you can actually
leverage the cloud and downsize the amount of
CPU you use.

Before we continue, I need to provide a bit of
background on the concept of the utilisation
sweet spot.

Unlike storage space, where you can be at nearly
100% utilisation without degradation, CPU
utilisation is more complex. The graphs below
illustrate the relationship for a single server. In all
four graphs, the x-axis is an increasing workload
e.g. number of users or transactions per second.

The top left graph shows response time, and
the key here is that at around 70-80%, response
times will degrade probably to the point users
will complain. At the 70-80% point this is where
you have hit the sweet spot of the lowest cost per
transaction. You have a static cost for the server as
seen in the bottom left, but a decreasing cost per
transaction as you increase workload see bottom
right.

Is more efficient code faster?

17

Most major cloud providers offer compute
resources in what they call “t-shirt sizes.”
Typically, these sizes double the number
of CPUs as you move to the next larger
box. Therefore, efficiency gains often need
to exceed 50% to justify a change in size.
The good news is that if your software is
currently inefficient, achieving these gains is
likely possible.

 Aim to maximise the usage of all your
compute resources and remember to
do this as your workload increases and
decreases throughout the day.

Cautionary Tale Golden Rule

18

Chapter 4
When Do I Optimise?

“Any design, whether for a bridge or
a building, must start with a solid
foundation. If the foundations are
not right, everything else will be
wrong.”

- Henry Petroski, Engineer

Not every line of code needs to be efficient. You
are losing money if the software costs more to
make efficient than it saves. However, as we
know, if we don’t start with firm foundations, we
will never get it right. I have always liked Connie
Smith’s (author of Performance Engineering of
Software Systems) example, which says it is much
easier to build an energy-efficient house from
the ground up rather than retrofit (I can relate to
living in a house over 350 years old and is painful
to heat).

However, there is also Donald Knuth’s view
from his book Computer Programming as an
Art (1974) that “premature optimization is the
root of all evil.” Interestingly, the full quote from
the book is more nuanced: “The real problem is
that programmers have spent far too much time
worrying about efficiency in the wrong places
and at the wrong times; premature optimization

is the root of all evil (or at least most of it) in
programming.”

 So, who is right? When do you start writing
efficient code? Well, I think both Donald and
Connie are right. You just need an approach
proportional to what you want to achieve. The key
to successful optimisation is focusing on efficiency
in the right places.

From the beginning, you must understand the
big cost drivers and choose an appropriate initial
architecture/design. Of course, this is one of those
things that is easy to say but difficult to do as you
are dealing with a lot of ambiguity at this stage.
I recommend listing the known drivers and the
assumptions you are making to aid clarity and
allow stakeholders to correct the fundamentals.

19

Communicate the efficiency objectives to the
teams. It is pointless to identify that user cases or
code areas will be the most cost-critical without
telling the developers this information.

Measure and test to ensure you are getting the
performance and efficiency you want. Use the
data from this to refine what changes need to be
made to improve efficiency. As Dr Werner Voges
says, as part of his Frugal Architect laws , cost
optimisation is incremental.

“The pursuit of cost efficiency is an ongoing
journey. Even after deployment, we must revisit
systems to incrementally improve optimization.
The key is continually questioning and diving
deeper. Programming languages provide profiling
tools to analyse code performance, and while
these require setup and expertise, they enable
granular analyses that can lead to changes that
shave milliseconds. What may seem like small
optimizations accumulate into large savings at
scale.”

I discuss benchmarking and monitoring in Chapter 9: Checking you are getting it right?

A company didn’t do any cost analysis and
migrated all the data from their on-premises
system to the cloud. The data was stored on
expensive disc rather than object storage.
The reality was very few customers used
any data over two years old. Had they
identified this before migration, they could
have archived the data to cheaper storage or
rewarded customers for deleting data.

Don’t let procrastination stop you from
making decisions but also don’t just make
design decisions. Do a bit of analysis to
support them!

Cautionary Tale Golden Rule

 https://www.thefrugalarchitect.com/laws/cost-optimization-is-incremental/

20

Exploring efficient language – an academic
point of view

Chapter 5
What Shall I Code In?

 “It is in your moments of decision that your destiny is shaped.” - Tony Robbins

In this chapter, I want to address the subject of language choice. This is a tricky subject for many reasons. Firstly,
many organisations have defined policies around the languages they will use. Stepping out of that box may not
be allowable. Secondly, a more efficient programming language is not a panacea; inefficient code can be written
in an efficient language. Thirdly, sometimes the code choice is irrelevant.

However, what is the most efficient programming language?

To be honest, I don’t know. This is an area of research that needs more focus, but I will touch on it briefly below.

The most commonly referenced paper I see
on social media is “Energy Efficiency Across
Programming Languages: How Do Energy, Time,
and Memory Relate?” by Pedro R. Pereira, Marco
Couto, et al in 2017 . The paper investigates
the relationship between energy consumption,

execution time, and memory usage across 27
programming languages. The authors sought to
provide empirical data to inform developers on
how language choice impacts software efficiency.
Using a set of well-defined benchmarks, they
measured each language’s performance in terms
of time, memory, and energy usage.

 https://www.thefrugalarchitect.com/laws/cost-optimization-is-incremental/

21

The study found significant differences between
languages, with lower-level languages like C, C++,
and Rust typically performing better in terms
of energy efficiency, time, and memory usage,
compared to higher-level languages like Python
and Perl. However, if you are looking for a clear
winner we are out of luck. Overall, C was the
fastest and used the least energy, but Pascal used
the least memory.

An important insight from the research is that
faster execution times do not always correlate
with lower energy consumption. Some languages,
while fast, consume more energy due to factors
like inefficient memory access patterns or
garbage collection processes. For example, Java
may perform relatively well in terms of execution
time, but its memory management features,
such as garbage collection, can result in higher
energy usage. Conversely, some languages may
take slightly longer to execute a task but consume

less energy due to more efficient memory usage
and resource management. This challenges the
common assumption that optimising for speed
will inherently reduce energy consumption.

The study emphasises the need for developers
to balance energy, time, and memory efficiency
based on the specific requirements of their
project. While low-level languages like C and Rust
offer the best overall balance of performance,
developers working on higher-level languages
may still need to optimise energy efficiency,
particularly in contexts like mobile devices or data
centres where power usage is a major concern.

The key takeaway is that the most energy-
efficient language is not always the fastest, and
careful consideration of all three metrics — time,
memory, and energy — is essential for efficient

software development.
You will have the same issue from a cost
perspective: Fast does not always mean efficient.
A faster language may use more resources than a
slightly slower language, hence “cost” more.

Of course, low-level languages (C, Rust), aka
compiled languages, are often the most cost-
efficient. The hard work of translating the code
down to the processor instructions (machine
code) is done once at compile time. These
languages often require the programmer to
manage memory and system resources directly.
Because of their proximity to the hardware, they
offer better performance and control over how the
machine operates, typically making them suitable
for performance-critical applications. However,
low-level languages can be more challenging to
write and maintain due to their complexity and

lack of abstraction.
High-level languages (Python), aka interpreted
languages. This is where a program directly
executes the instructions of a high-level
programming language by translating them line-
by-line into the processor instructions without
needing to compile the entire program first. This
process typically adds an overhead in CPU and
memory costs, hence the cost. However, they
provide greater abstraction from the machine’s
hardware, allowing developers to write code in
a way that is often more intuitive and closer to
human languages. They manage many low-level
details like memory allocation, system resources,
and hardware interaction behind the scenes,
which makes them easier to write, read, and

22

A company was worried about their
spending on a particular serverless function.
The cost model for these calls was based on
the memory used and the duration of the
function. The engineer felt that it was down
to the function being written on C#, and they
opted to re-write the function in Rust as it
was more efficient. However, the savings
were minimal. That was because, for that
particular function, the majority of the time
was spent calling and waiting for a response
from a database server! When analysed,
the C# code was responsible for 10% of the
overall response time, so any improvement
to it made little impact on the cost.

Remember the overhead of programming in
a more efficient language must save more
than any increase in development and
support costs. You also need a supply of
developers that know the language!

Cautionary Tale Golden Rule

it right)
Of course, what complicates this is that you can
use code libraries in interpreted languages that
are pre-compiled, and hence, some parts of your
code can run as efficiently as compiled languages.
For example, using the NumPy library in Python
for matrix calculations is significantly faster than
the native code.

Here is a cost-efficient chart, as yet not drawn to
scale. Please do your own investigation.

maintain.
There are languages like Java/C#, which are a
sort of hybrid; they get compiled to byte code
that is then interpreted. Techniques like Just In
Time Compilers can be used. This is where the
first time code is interpreted. However, if the
code is frequently executed, then it is compiled
to machine code. This is a great feature but does
make it a challenge when benchmarking and
testing (see Chapter 9: Checking you are getting

23

Chapter 6
Code to Avoid Wastage
“The most cost-efficient code is often the code you don’t write.”

- Andrew Lee

Please excuse the self-promotion of this quote,
but I want to make the point that every feature
you code is likely to have a cost in the cloud.
Some will be low, and some will be high. The key
is making sure you are prepared to question the
value!

Of course, there are other code-related changes
you can implement that will help with cost
control. Many of these techniques are core to
building cloud native systems. Cloud native
systems are software applications that are built
to run in a cloud computing environment. Cloud
native applications are designed to be scalable,
resilient, and easy to manage.

Below are some of the techniques you can code
into your software to avoid wastage and make it
cheaper/easier to manage.

1. Load shedding

	■ Definition: Load shedding involves
temporarily offloading non-essential processes
during peak demand or high-cost periods to
minimise overall expenses.

	■ Benefit:
	 o	 By offloading or delaying less critical 	
		 processes, organisations can reduce the
 		 total compute and storage resources 	
		 consumed, thereby lowering their cloud 	
		 costs.
	 o	 This approach is particularly beneficial 	
		 during sudden spikes in demand, which 	
		 can lead to unanticipated cost increases 	
		 if not managed effectively.

24

		 based on real-time pricing fluctuations 	
		 and resource availability.
4. Load throttling to avoid over-provisioning

	■ Definition: Load throttling involves
dynamically regulating the rate of incoming
requests or transactions during periods of
high demand to prevent the system from
overloading resources.

	■ Benefit:
	 o	 Load throttling allows software
	 to handle peak loads without requiring 	
	 excessive provisioning of resources, which 	
	 would remain underutilised during normal 	
	 operation.
	 o	 By controlling the rate of incoming tasks, 	
	 the system can prevent performance 		
	 degradation while staying within cost-	
	 efficient resource limits.
	 o	 Reduces the need for upfront investment 	
	 in high-capacity infrastructure and ensures 	
	 that resources are right-sized to meet 	
	 average rather than peak demand.
	 o	 Load throttling also allows more 		
	 predictable performance and cost 		
	 management during demand fluctuations, 	
	 providing a buffer against sudden surges 	
	 without additional expenses.

5. Shifting non-critical workloads to off-peak
periods

	■ Definition: Non-critical workloads, such
as data backups, batch processing, or analytics
tasks, can be scheduled to run during off-peak
hours when resource utilisation and demand
are low.

	■ Benefit:
	 o	 Maximises the usage of available
		 resources by shifting less urgent tasks 	
		 to times when the system would 		
		 otherwise be underutilised.
	 o	 Reduces the likelihood of resource 	
		 contention during peak hours, thereby 	
		 enhancing the performance of critical 	
		 workloads.
	 o	 Off-peak scheduling allows organisations 	
		 to take advantage of lower-cost resources 	
		 or spot pricing during non-peak times, 	
		 further optimising overall cloud spend.
	 o	 By balancing the workload across 	
		 different time periods, businesses can 	
		 ensure a more stable and predictable 	

	 o	 Load shedding ensures that systems 	
		 remain responsive for high-priority tasks 	
	 while deferring less critical activities to less 	
	 costly times.

2. Prioritisation of gold paying users

	■ Definition: Not every user in your system
will pay the same or have the same service
level. Writing your code to prioritise/schedule
these users avoids the situation where all
users are treated equally in the system and
additional resources are required to offer that
level of service to all.

	■ Benefit:
	 o	 Guarantees that mission-critical 		
		 processes (e.g., financial transactions, 	
		 data writes) are not impacted during 	
		 resource contention, maintaining high 	
		 service quality and reliability.
	 o	 Enables better control over resource 	
		 allocation by distinguishing between 	
		 essential and non-essential activities, 	
		 reducing unnecessary consumption of 	
		 expensive resources.
	 o	 Creates an opportunity to reduce costs 	
		 without compromising user experience, 	
		 as essential functions are protected even 	
		 during cost-cutting measures.

3. Leveraging spot pricing with stop and
resume processing

	■ Definition: Cloud providers offer spot
instances at significantly reduced prices for
spare capacity. However, these instances can
be terminated with short notice, making them
ideal for interruptible workloads.

	■ Benefit:
	 o	 The use of spot instances can reduce 	
		 compute costs by up to 90% compared 	
		 to on-demand instances, which makes it 	
		 an attractive option for batch processing 	
		 or non-urgent computational tasks.
	 o	 By designing software that can gracefully 	
		 handle interruptions — saving state and
		 resuming processing as required — 	
		 organisations can optimise for the lowest
	 	 possible cost while maintaining 		
		 operational integrity.
	 o	 Spot pricing enables more granular 	
		 control over spending, as processes 	
		 can be dynamically paused and resumed 	

25

		 resource usage pattern, leading to better
		 overall system efficiency and cost 		
		 savings.

6. Data archiving and deletion policy

	■ Definition: A data archiving and deletion
policy involves systematically identifying,
archiving, or deleting data that is no longer
actively used or required. This can include old
log files, stale transactional data, or backups
that have surpassed retention policies.

	■ Benefit:
	 o	 Cost reduction: Reduces storage costs
		 by minimising the amount of data 	
		 retained in expensive storage solutions. 	
		 Organisations can achieve significant 	
		 savings by archiving less frequently 	
		 accessed data to cheaper, lower-tier 	
		 storage.
	 o	 Improved performance: Reducing 	
		 the active data footprint can enhance the
 		 performance of databases and 		
		 applications by lowering the time it takes 	
		 to process and retrieve information.
	 o	 Regulatory compliance: A defined 	
		 data archiving and deletion policy 	

		 ensures that data retention aligns with 	
		 legal and regulatory requirements, 	
		 reducing the risk of non-compliance 	
		 penalties.
	 o	 Simplified maintenance: Regular
		 data cleanup minimises clutter and 	
		 simplifies the management and
		 maintenance of cloud resources, 		
		 enabling better monitoring and cost 	
		 control.
	 o	 Enhanced security: Deleting outdated or 	
		 unused data reduces the potential 	
		 attack surface, improving overall security 	
		 posture by minimising exposure to 	
		 vulnerabilities and reducing the impact 	
		 of data breaches.

7. Dynamic Resource Allocation and
Elasticity

	■ Definition: Cloud-native software is
designed to automatically scale resources up
or down based on real-time demand and usage
patterns, ensuring optimal resource utilisation.

	■ Benefit:
	 o	 Elastic scaling allows software to adapt
		 to changing loads, minimising over-	
		 provisioning and the associated costs of 	
		 unused capacity.
	 o	 By dynamically allocating resources, 	
		 organisations can maintain optimal 	
		 performance during peak times without 	
		 incurring unnecessary costs during low-	
		 demand periods.
	 o	 This adaptability is crucial for managing 	
		 variable workloads, and it also supports 	
		 leveraging cost-effective resources, such 	
		 as spot instances, whenever possible.

While doing a cost optimisation exercise,
an engineer discovered that the sizing of
the database (and hence the costs) was
driven by a few demanding SQL queries. The
queries themselves were pretty optimal.
It was just that as the company grew its
customer base, they disproportionately
became more demanding. This was
because they were creating friend-type
recommendations, and as more people
joined, the complex connection logic would
run longer.

The code ran for every login and featured the
recommendations on the portal page hoping
to encourage people to click through on
the recommendations. Delving deeper into
the web analytics, they noticed that hardly
anyone used the functionality as it wasn’t a
core feature; in discussion with the business,
it was decided to disable this feature to save
money!

The features you add and remove that make
your code efficient are as important as the
way you write them.

Cautionary Tale

Golden Rule

26

26

Understanding algorithm efficiency

Chapter 7
Getting the Algorithm Right

There’s a well-known joke about a tourist in Ireland who asks one of the locals for
directions to Dublin. The Irishman replies: ‘Well sir, if I were you, I wouldn’t start
from here’.

Algorithm design plays
a fundamental role in
determining the efficiency
and performance of computer
programs. A well-designed
algorithm can drastically
reduce the time and resources
required to solve a problem,
while a poorly designed one
can make even simple tasks
computationally expensive.
The impact of good algorithm
design is so significant that
it often determines the
feasibility of solving complex
problems within a reasonable
timeframe. This is where
concepts like asymptotic
notation, particularly Big-O
notation, become critical for
understanding and comparing
the efficiency of different
algorithms.

When discussing algorithm efficiency, we are
primarily concerned with how the amount of
work (e.g., time or memory) required scales with
the size of the input. This scaling behaviour is
captured using Big-O notation, which describes
the upper bound of an algorithm’s growth rate.

For example:

	■ An algorithm with a time complexity of
O(n) means that the time it takes to execute
grows linearly with the size of the input.

	■ An algorithm with O(n2) complexity
means that the time required increases
quadratically with input size, i.e. doubling the
input size would increase the time by a factor
of four.

27

Why Big-O Notation MattersChapter 7
Getting the Algorithm Right Big-O notation provides a way to express how much more work an algorithm requires as the input size increases.

For instance, consider two algorithms for summing the elements in a list of numbers:
1.	Algorithm A has a time complexity of O(n).
2.	Algorithm B has a constant time complexity of O(1).

For small inputs, both algorithms might perform similarly. However, as the input size increases, Algorithm B, with
its O(1) complexity, will become significantly more efficient compared to Algorithm A.

The following table illustrates this difference:

The values in the table show the number of operations each algorithm would perform for different input sizes.
As the input size increases, Algorithm A’s work grows linearly, while Algorithm B’s work remains constant,
demonstrating a significant reduction in computational effort due to better algorithm design.

Example: Summing the Elements in a List

Let’s consider a concrete example to illustrate how different algorithm designs can impact the efficiency of
solving a problem.

Problem: Given a list of numbers, find the sum of all elements.

Naive Algorithm: Use a loop to iterate through each element and add them together.

 public class SumNaive {
 public static int sumNaive(int[] arr) {
 int total = 0;
 for (int num : arr) {
 total += num;
 }
 return total;
 }

 public static void main(String[] args) {
 int[] numbers = {1, 2, 3, 4, 5};
 System.out.println(“Sum: “ + sumNaive(numbers)); // Output: 15
 }
 }

Input Size (n) Algorithm A: O(n) Algorithm B: O(1)

10 10 operations 1 operation

100 100 operations 1 operation

1,000 1,000 operations 1 operation

10,000 10,000 operations 1 operation

28

Time complexity: This approach iterates through each element once, resulting in a time complexity of O(n).

Optimised algorithm: Use the mathematical formula for summation of an arithmetic series:

For a list containing numbers from 1 to n, the sum can be calculated using the formula:
					 Sum=(n(n+1))
						 2

 public class SumOptimized {
 public static int sumOptimized(int n) {
 return n * (n + 1) / 2;
 }

 public static void main(String[] args) {
 int n = 5; // Sum of numbers 1 to 5
 System.out.println(“Sum: “ + sumOptimized(n)); // Output: 15
 }
 }

- **Time Complexity**: This formula uses only a few arithmetic operations, regardless of the input size, resulting
in a constant time complexity of O(1).

For a list of 1,000,000 elements, the naive algorithm would require 1,000,000 operations, while the optimised
algorithm would need only a single operation — a dramatic reduction in computational work.

The importance of algorithm design in practice

Algorithm design and analysis are not just academic exercises. They have practical implications for a wide range
of applications, from data processing to machine learning, database management, and more. For instance, search
engines rely on sophisticated algorithms to quickly retrieve relevant information from vast amounts of data,
while encryption algorithms ensure secure communication by making decryption infeasible within reasonable
timeframes.

29

Conclusion

Algorithm design is a powerful tool for optimising code and reducing computational work. By leveraging
techniques such as asymptotic analysis and Big-O notation, developers can choose or design algorithms that
scale well with input size, thus minimising computational resources. In practice, selecting an appropriate
algorithm can transform an otherwise infeasible problem into one that can be solved efficiently, making
algorithm design an essential skill for programmers and computer scientists alike.

While choosing algorithms with better
asymptotic complexity is generally
beneficial, it’s important to consider that
algorithms with lower theoretical time
complexity are not always faster for small
inputs in real-world applications. This is
due to the constant factors and overhead
involved in some optimised algorithms.

Always aim for the simplest algorithm that
achieves the desired outcome with the least
amount of work.

This means choosing an algorithm
that solves the problem correctly while
minimising computational resources,
ensuring efficiency.

Cautionary Tale Golden Rule

30

Chapter 8
Crafting Cost Efficient Code

“More computing sins are
committed in the name of efficiency
(without necessarily achieving it)
than for any other single reason —
including blind stupidity.”

— William A. Wulf

When it comes down to crafting lines of code for efficiency, the mantra is less is more. That is, less resource used
(CPU/Disk/Storage etc.) means more cost savings. You must think about the concept of work i.e. the amount of
CPU cycles or data that needs to be processed. The more you can write your code to do the required functionality
in the least amount of CPU cycles or memory, the better.

Below are eight techniques for minimising the work you need to do. Remember, sometimes there is never a
single solution

1. Reduce the amount of work or data you store. This is probably the key optimisation that you can do. This
could be a fairly simple optimisation. For example, using Precomputation to calculate frequently used values
ahead of time and storing them to avoid repeated computation during runtime. This is particularly powerful
when used to optimise loops (known as hoisting). This can be seen in the loop example below:

int factor = x * y; // Factor is calculated once before the loop
 for (int i = 0; i < numbers.length; i++) {
 sum += numbers[i] * factor;
 }

31

Chapter 8
Crafting Cost Efficient Code

Another example may be as simple as using short-circuiting. This is for logical operators, where the execution will
skip the processing of the subsequence operands if any fail. This is achieved in some languages using (e.g., `&&`
or `||` in C-style languages). Hence, if you look at the code snippet below, then in that case, it would output 4 as
the first conditional is false, and the second is not executed.

public static void main(String[] args) {
 int a = 10;
 int b = 4;

 if (a == 0 && ++b == 5) {
 //Do Stuff;
 }
 System.out.println(b);

2. Be careful of the trade-off between data and compute. You may save memory space by encoding data
but spend more CPU computational time encoding and decoding it. You have to decide what will be the biggest
cost dimension for this. For example, if you have lots of data but do very little processing, then encoding that
data will be better.

3.Reuse things that you would have to compute again. This is more of a tricky optimisation as memory
costs, so you have to get benefit from anything you save. Also, caching data may benefit response time! Again,
you are in the cost vs. response time trade-off. However, common-subexpression elimination helps with coding
efficiency.

4.Exploit. If libraries or native functions exist to do things you need to do, check them out. They may very well
be faster than the code you can write. This is particularly true with higher-order languages that are interpreted,
as libraries may be directly pre-compiled and run super efficiently. Java provides a variety of optimised methods
in the Java.util package, such as Collections.sort() for sorting lists.

5.Sympathise. There is the concept of Mechanical Empathy. This is originally a quote from British Racing Driver
Jackie Stewart: “You don’t have to be an engineer to be a racing driver, but you do have to have Mechanical
Sympathy”. This is about writing code that makes the most of the underlying hardware.
For example, can writing your code to maximise the process cache improve efficiency? To illustrate the effect of
the cache, consider the task of summing all the elements in a 2D matrix. We simply loop through each element,
adding the element’s value to the sum. We have a choice to iterate row by row or column by column. The code to
iterate row by row is shown below:

for i in range(Size):
 for j in range(Size):
 sum += x[i][j]

To change it to column by column, you would just adjust the array indexing to:

sum += x[j][i]

Now, we would expect that regardless of the iteration choice, the programs should take an equal amount of time.
However, when I ran tests for various matrix sizes, there was a distinct difference in the execution time.

32 So, why do we observe different performance? It has to do with how memory is loaded into the cache. After the
first row is loaded into the cache, it prefetches the next row. Since row-by-row iterations match this prefetching,
more data can be retrieved from the cache, thus improving performance. Additionally, the cache is 64-bit, so if
each element of the matrix is smaller than this, you will get multiple elements per cache line.

It’s interesting to note, one thing that is often forgotten is that retrieving memory from the CPU cache or main
memory is counted as part of CPU time.

6. Match the data structure you choose to the operations you are doing. For example, you could store
data in an array, list or a Hashmap. Each of these offers different efficient characteristics depending on what type
of operations and what dimension you want to be efficient. For example, the most efficient for an index lookup
could be an array when compared to the others but an array needs to be fixed size. This means that if the array is
sparsely populated you will not be memory efficient. Again, this is a case of understanding the usage(workload)
and requirements to choose the best fit.

7. Predict. Write your code in the order you think it will get executed to aid branch prediction. Writing code in a
way that aids the CPU’s branch prediction mechanisms can lead to significant performance improvements. This
often involves structuring if-else blocks such that the most likely branches are evaluated first. Even if you are not
worried about branch prediction on the CPU the idea of ordering tests is to perform those that are more often
successful. Similarly, inexpensive tests should precede expensive ones.

Inefficient code by not combing the tests

if (age >= 18) {
 if (salary >= 40000) {
 if (hasGoodCredit) {
 System.out.println(“Eligible for a loan.”);
 }
 }
 } else {
 System.out.println(“Not eligible for a loan.”);
 }

33

Combing tests and using short circuiting for improved efficiency

 if (age >= 18 && salary >= 40000 && hasGoodCredit) {
 System.out.println(“Eligible for a loan.”);
 } else {
 System.out.println(“Not eligible for a loan.”);
 }

8. Test / experiment. Now this is not easy. If you are really looking at optimising code, test your trade-offs (see
the next chapter). Also, don’t underestimate the power of explaining your code to another developer. You will
probably spot optimisations if you talk it through!

A development team combined Java
functions with the aim of reducing the
overhead of calling the function. However, in
the test, this had a negative effect as Java’s
Just-In-Time (JIT) compiler can optimise
small functions by inlining them. In addition,
this also improves the cache hit ratio on the
processor. (Good job they tested their code!).

Remember, to optimise what needs to be
optimised not what you want to optimise

Cautionary Tale Golden Rule

34

Chapter 9
Checking You Are Getting It Right

 “Programming today is the
opposite of diamond mining. In
diamond mining you dig up a lot of
dirt to find a small bit of value. With
programming you start with the
value, the real intention, and bury it
in a bunch of dirt.”

— Charles Simonyi

During the development cycle, you will need to
determine if certain pieces of code are efficient
enough, or you may need to benchmark code to
help you make the right decisions. These small
developer-led benchmarks are called micro
benchmarks.

Typically, micro benchmarking involves measuring
the performance of very small sections of code,
usually individual functions or small code blocks.
Micro benchmarking helps identify inefficiencies
in specific parts of code, enabling developers
to optimise critical sections. It provides insights
into how various algorithms and data structures
perform, especially under different scenarios or
inputs. This allows for comparison of different
implementations, be it a function or algorithm or
maybe which library to use. A mature organisation
may incorporate this into their development
pipelines to help detect performance and
efficiency.

If you are going to benchmark, the trick is
getting it right, such that the decisions made
when running code locally in a development
environment work just as well in a production
environment with real world data.

35

Chapter 9
Checking You Are Getting It Right

Common pitfalls of micro benchmarking

1. Lack of context: Micro benchmarks measure
the performance of isolated code segments,
often ignoring broader context, such as memory
hierarchy effects, network latency, or interactions
with other parts of the application.

2. Compiler optimisations: Modern compilers
can optimise code in surprising ways. For
example, the compiler might remove or change
certain code paths when it determines that the
results are not used. This can lead to inaccurate
measurements. For example, Java uses Just in
Time compilation, and this may or may not occur
when you run your benchmark in the same way as
production.

3. Unstable measurements: Small code
segments can produce noisy results due to
variations in system state (CPU frequency scaling,
background tasks, etc.). Ensuring stability and
consistency in measurements can be challenging.

4. Hardware and OS dependencies: The
results of a micro benchmark can vary widely
based on the underlying hardware (CPU, memory,
cache) and the operating system. Benchmarks on
one machine might not generalise to others.

5. Ignoring Real-World Scenarios: Micro
benchmarks often use idealised inputs and
configurations that do not represent typical usage
patterns, leading to misleading conclusions about
actual performance.

As you can see above there are a lot of bear traps
to grab you when you execute micro benchmarks.
So, what can you do to help avoid these?

	■ Run multiple iterations: Run the
benchmark many times and calculate
statistical measures like mean, median, and
standard deviation to get reliable results.

	■ Use appropriate tools: Use dedicated
benchmarking libraries or tools like Google
Benchmark for C++, Benchmark.js for
JavaScript, Java Microbenchmark Harness
for Java or ‘timeit’ for Python to minimise
measurement overhead.

	■ Analyse in context: Use micro
benchmarking in conjunction with profiling
and macro-level performance testing to get a
holistic view of performance.

The last one is one of the most tricky as
performance and efficiency are not always the
same. You need to look into the underlying
execution to determine the efficiency.

To give some context there is the Processor Iron
Law.

The Processor Iron Law is a principle in
computer architecture that describes the trade-
off between execution time, the number of
instructions executed, and the clock cycle time (or
how fast instructions are processed). It states that
the execution time of a program is determined
by three factors: the number of instructions
executed, the average number of clock cycles
required per instruction (CPI), and the clock cycle
time. Mathematically, it’s expressed as:

Execution Time = Instructions × CPI × Clock
Cycle Time

This law highlights that improving overall
execution time typically involves optimising one
or more of these variables. For example, reducing
the number of instructions by using more efficient
algorithms, decreasing CPI through better
instruction scheduling or pipelining, or decreasing
the clock cycle time by using faster processors
can all lead to faster program execution. However,
changes in one area can affect the others, making
it crucial to balance these factors when designing
or optimising a system.

36

Hardware performance monitoring unit (PMU)
counters

Luckly, there are hardware performance
monitoring unit (PMU) counters which are
specialised registers provided by modern CPUs
that track various low-level hardware events,
such as cache misses, branch mispredictions,
and instruction counts. They are invaluable for
understanding the underlying performance
characteristics of code, especially in the context of
micro benchmarking. A good micro benchmarking
tool will collect and present PMU counters.

Key PMU Metrics will measure:

	■ Instruction count: Track the number
of instructions executed to understand the
efficiency of the code. The fewer instructions,
the better.

	■ Cache usage: Monitor cache hits and
misses to identify memory access patterns
and locality issues. Maximising cache hits will
improve efficiency, but beware: this behaviour
will dramatically change in a production
system with multiple code paths running.

	■ Branch performance: Use branch
prediction counters to see if the code is
causing frequent mispredictions. The less
misprediction, the better.

	■ Stalls and pipeline issues: Measure stalls
(e.g., memory stalls, instruction fetch stalls) to
see if the CPU pipeline is effectively utilised.

Running different micro benchmarks allows you
to see the impact of the hardware and helps you
make decisions about optimal code choice.

A software developer micro benchmarked
several versions of their new function.
Ignoring the PMU counters they chose the
fastest. However, this was less efficient than
other options and led to additional costs in
the cloud.

Be driven by measurement, but make sure
what you measure is representative of real-
world scenarios.

Cautionary Tale Golden Rule

37

Chapter 10
Checking You Got It Right? You Won’t
“The streetlight effect occurs when people only search for something where it
is easiest to look.”

- David H. Freedman

When trying to identify areas to optimise in
cloud-based systems, the primary challenge is
achieving visibility into the various components
to determine if they are running efficiently. This
is where observability and cloud monitoring
tools play a critical role. These tools provide
insights into resource utilisation, performance
bottlenecks, and application behaviour, allowing
you to spot inefficiencies.

One approach to resource optimisation is to
ensure that your cloud resources are operating
within the “Goldilocks Zone” — not over-utilised to
the point where response times are impacted and
not underutilised, leading to unnecessary costs. If
you remember the graphic in Chapter 3, it shows
how response time drastically degrades after 70%-
80%. For instance, you can monitor CPU, memory,
and I/O to ensure that the resources are not being
throttled or sitting idle.

However, merely having a resource at an ideal
utilisation level is only the initial step in achieving
efficiency. The next phase involves verifying that
the software executing on those resources is
configured and behaving in an optimal manner.
Just think; a poorly written, inefficient code will
use a lot of computing resources. This can be a
complex process because even if the hardware
utilisation appears to be balanced, inefficiencies
in code execution, suboptimal algorithms, or
improper configurations can lead to hidden
performance and cost inefficiencies.

38

Using flame graphs to detect CPU usage and
pinpoint optimisation areas

Flame graphs are a powerful visualisation tool that can help detect inefficiencies at the CPU level. They provide
a detailed view of where time is being spent in your code, making it easier to identify performance bottlenecks,
hotspots, or sections of the code that may need optimisation. By visualising CPU activity, flame graphs can
show you if certain functions or threads are over-utilising CPU resources, potentially leading to performance
degradation.

For example, flame graphs allow you to see which functions are consuming the most CPU time, indicating areas
where code improvements can yield significant gains. This makes it easier to focus optimisation efforts where
they will have the most impact, such as optimising or re-writing specific algorithms, minimising I/O wait times, or
parallelising operations to distribute the load more effectively.

39

Importance of cost allocation and tagging

In addition to optimising performance, managing
cloud costs is equally crucial for efficient
cloud operations. Cost allocation and tagging
are fundamental practices that enable you
to understand and manage cloud expenses
effectively. Tagging resources is akin to labelling
expenses in a budget. By tagging resources with
metadata such as project names, department
codes, or environment identifiers (e.g., “dev” or
“prod”), you gain the ability to track costs, identify
spending patterns, and ensure accountability
within your organisation.

Ideally, proper tagging should enable the
calculation of **cost per transaction**. This
requires a clear understanding of both resource
usage and demand. For instance, by tagging
resources based on different transaction types or
services, you can attribute costs to the number
of transactions processed. This approach allows
you to monitor costs relative to business activity

and ensure that expenses are proportional to
transaction volumes. Without consistent and
meaningful tagging, it becomes challenging to
measure efficiency, as you cannot correlate usage
with transaction counts.
By achieving cost-per-transaction visibility,
organisations can make informed decisions
on resource allocation, identify opportunities
to optimise specific transactions, and forecast
costs more accurately. Ultimately, this level of
granularity provides transparency into cloud
expenses and allows for better resource and
budget management.

In summary, achieving cloud optimisation
requires a holistic approach that combines
resource observability, performance analysis
using tools like flame graphs, and robust cost
management through tagging. These practices
ensure that your cloud infrastructure is not only
performing optimally but is also cost-effective.

A company did not have full coverage of
monitoring their application in production.
Without this, they often increased capacity
(wasted costs) to avoid performance issues
rather than solving the root cause of the
performance issue.

You can only effectively manage what you
can monitor.

Cautionary Tale Golden Rule

40

Chapter 11
What About the Soft Costs?

“Time is the scarcest resource, and unless it is managed, nothing else can be
managed.”

– Peter Drucker

If you’re working in the cloud, transitioning
to the DevOps methodology is essential. The
primary goal of DevOps is to improve product
delivery quality by facilitating fast, end-to-end
development cycles. This allows teams to deliver
high-quality products rapidly while offering value
for money. However, it’s easy to lose sight of costs
during this shift and, without proper oversight,
you can accumulate significant expenses when
implementing DevOps.

DevOps teams must prioritise cost efficiency.
The mindset of the team should inherently include
cost management to ensure sustainable growth
and operational agility. Designing and deploying
solutions with cost efficiency at their core will
enable teams to optimise resource usage, reduce
unnecessary operational expenses, and ultimately
improve the return on investment. Cost efficiency
is key to developing scalable, robust, and
financially sustainable DevOps practices.

41

Chapter 11
What About the Soft Costs?

Automating environment builds

Reducing human support costs

Cloud provider agnosticism

DevOps encourages the maximisation of
automation tools, particularly for infrastructure
provisioning. Managing cloud applications is
a significant cost and automation is critical to
easing this burden. Tools such as Infrastructure
as Code (IaC) enable the definition and
provisioning of cloud infrastructure using code.

Your application architecture can benefit greatly
by offloading operational responsibilities to
managed platforms and services. These non-
differentiated workloads are tasks that do not
give your business a competitive advantage but
are necessary for operations. Examples include
databases, message queues, or content delivery
networks (CDNs). These services are critical but
do not differentiate your product from others in
the market. By using managed platforms for these
workloads, you free up your team to focus on core
business innovations.

Examples of cloud services that manage

Adopting a hybrid or multi-cloud strategy can
be a cost-effective approach, particularly if you
remain cloud provider agnostic. This means
that your systems are designed to run on any
cloud provider, allowing you to choose vendors
based on specific service costs or features. Often,
smaller vendors specialise in niche services —
such as storage or content delivery — and may
offer cheaper alternatives compared to major
cloud providers like AWS, Azure, or Google Cloud.

However, there are scenarios where sticking
with a single cloud provider is advantageous.
For example, if your application heavily relies on
proprietary services like Amazon Lambda (for
serverless computing) or Azure Cosmos DB (for
globally distributed databases), using a single

IaC allows teams to replicate environments,
track changes, and roll back configurations
seamlessly, streamlining operations. For instance,
teams can use IaC to create test environments
that mirror production, spinning them up only
when necessary. This reduces both operational
complexity and cost.

non-differentiated workloads include:
	■ Amazon RDS (Relational Database

Service) or Google Cloud SQL for database
management

	■ Amazon SQS (Simple Queue Service) or
Azure Queue Storage for message queuing

	■ Amazon CloudFront or Azure CDN for
content delivery

By utilising such services, you reduce human
intervention, streamline operations, and minimise
the cost associated with managing infrastructure
manually.

provider can streamline integration, simplify
billing, and improve performance. Additionally,
single-cloud solutions can enhance security
through tighter controls and native support for
regulatory compliance in certain industries.

In essence, cloud provider agnosticism offers
flexibility and cost advantages, but in cases
where deep integration with specific services or
performance optimisation is crucial, relying on
a single provider may provide a more seamless
experience.

42

Implementing self-healing systems

Instrumentation from the start

Remember to balance maintainability vs
optimised code

Building self-healing and self-remediating cloud
applications ensures resilience and minimises
downtime. Automating the detection and
resolution of common issues allows systems

Instrumentation is essential for observability
and continuous integration/continuous delivery
(CI/CD) pipelines. Integrating instrumentation
directly into the application from the beginning

One common argument against heavy
optimisation is the increased maintenance
burden it may impose. However, not every line
of code needs to be optimised for maximum
efficiency. Focusing optimisation efforts
only on cost-critical components is crucial to
striking a balance between optimisation and
maintainability.

Maintainable code should follow clean code
principles, ensuring readability, modularity,
and scalability. Clean code is easier to manage,
debug, and extend, which reduces long-term
maintenance costs. Moreover, managing
cognitive complexity — the ease with which

to automatically recover from failures or
performance degradation. Using cloud-native
tools, you can design applications that respond
autonomously to incidents, maintaining
operational continuity.

can reduce the need for expensive external
monitoring solutions or sidecar containers.
However, it’s important to consider the storage
and overhead requirements associated with the
logging generated by your application.

someone can understand the code — is vital.
Excessive optimisation often results in convoluted
code that’s difficult to understand and maintain.
Code with low cognitive complexity is simpler to
manage and less prone to errors.

In summary, it’s important to be agile as an
organisation. Know when to prioritise efficiency
and when to prioritise maintainability. Optimising
only where necessary while adhering to clean
code principles will ensure that your systems
remain cost-effective, scalable, and easy to
maintain over time.

Optimised code is great unless the support
team is debugging it at two in the morning
as part of a critical incident. Be clever but
remember to comment!

 Take a holistic approach to costs!

Cautionary Tale Golden Rule

43

Chapter 12
Making It Stick

“Change is not just about adopting new strategies but creating a culture that
sustains your purpose and vision for the long-term.”

— John P. Kotter

This chapter takes it lead from Dr Manzoor
Mohammed, Cloud Cost Optimisation A more
thoughtful approach download

A well-defined strategy focused on cost
optimisation is essential for becoming a cost-
efficient organisation.

The approach centres around sustainable
cost optimisation by analysing historical data,

embedding efficient practices, and predicting
future spending trends. Here at Capacitas, we
base our methodology on the “Frugal Architect’s”
approach to software development, introduced by
Werner Vogels, CTO at Amazon.

Our aim is to help organisations solve the problem
of spiralling cloud costs, accelerate development,
and harness the full potential of the cloud.

https://hs.capacitas.co.uk/cloud-cost-optimisation-a-more-thoughtful-approach
https://hs.capacitas.co.uk/cloud-cost-optimisation-a-more-thoughtful-approach

44

1. Awareness

It’s crucial that teams understand how much
they’re spending on cloud services in relation
to the overall IT budget. Focusing on spend as
a portion of the IT budget provides a clearer
picture, avoiding the false sense of efficiency that
might arise from comparing it to overall business
revenue. Teams should have visibility into past
spending patterns and the ability to forecast
future costs.

Beyond a high-level overview, engineers should
understand how their services contribute to
the total cloud budget and how their decisions
impact service performance and reliability. This
awareness helps teams more effectively leverage
cloud cost management tools like Cloudability,
CloudHealth, AWS Cost Explorer, and Azure Cost
Management.

2. Prioritisation and time management

Teams must prioritise cloud cost optimisation
activities, such as reducing unnecessary capacity
or eliminating non-impactful costs. These
activities should be integrated into sprint cycles
or have dedicated cycles to ensure continuous
focus. Housekeeping activities, often overlooked,
are vital for understanding cloud costs and
maintaining efficient operations.

3. Observability

Visibility into cost, performance, and utilisation
data over both the short and long term is
essential. This visibility reflects a team’s
confidence and understanding of their systems.
For example, less confident teams might log
everything, keep data longer than necessary, or
rely heavily on logs instead of metrics, all of which
can increase costs.

Teams should consider three key areas:

	■ Tagging: Properly tag cloud systems to
track cost ownership.

	■ Metrics vs. Logs: Use metrics for easier
analysis and reduced costs.

	■ Granularity and Data Retention: Maintain
appropriate data granularity — one-minute for
system data and one-hour for cost data.

4. Understanding

Teams need to understand how cloud costs
relate to their services. They should be able to
quantify and articulate the business drivers of
capacity utilisation, cost, and performance. This
understanding is particularly vital for data-driven
workloads, where costs might increase more
rapidly than revenue growth.

5. Confidence

Teams must have confidence in their ability to
adjust cloud infrastructure without compromising
service reliability. Excess capacity often stems
from a lack of confidence in system reliability.
By increasing confidence, teams can eliminate
unnecessary capacity and deliver quality code
faster.

6. Product Value

A strong grasp of the product’s value to users
and the business is key to controlling costs. Align
business and engineering teams on the required
performance levels and determine the relevance
and obsolescence of product features to manage
costs effectively.

7. Predictability

Teams should have a long-term view of cloud
spend, predicting costs over the next three years
based on business demand. This predictability
aids in negotiating commitments with cloud
providers and enables better conversations about
the value delivered by cloud services.

These seven principles form the foundation of our
thoughtful approach to cloud cost optimisation,
helping our clients achieve long-term value from
their cloud investments while minimising costs
and enhancing performance.

45Conclusion

Remember, the cloud is still just offering compute
power, but now you can rent that by the second!
Or rent nothing when you don’t need it.

The cloud is a great opportunity to drive down
your organisation’s costs. However, it is like
having children: great fun but not always easy
to get right and sometimes they will drive you to
tears. (Some may be happy tears, others not!).

You have a lot to consider in any software project
with many competing demands with added cost
and time pressure. However, if you are going to
realise the benefits and the ultimate cost saving in
the cloud you need to design for cost at the very
beginning.

Hopefully, this white paper will help you achieve
this. You also have to remember everything is
proportional this means not every line of code
needs to be optimised. Not every subcomponent
needs to be trimmed to the bone. The trick is
setting off on the right path, making changes
along the way and focusing on the components
that will cost the most to run. Remain agile at all
times.

Good luck

Andrew Lee

Andrew Lee is a highly
experienced Performance
Engineer with over 30 years of
expertise in load testing, system modelling,
cost optimisation and capacity planning on
large-scale IT projects.

For the past 2.5 years at Capacitas, Andrew
has helped customers meet their performance
goals and reduce their cloud costs. Previously
he was a distinguished engineer for a large
international service provider working for
customers across the global.

Andrew’s deep technical expertise spans a
range of performance engineering disciplines,
from strategy and management to diagnostics
and testing. He is adept at using a variety of
industry-leading tools to identify bottlenecks,
optimize system performance, and provide
actionable insights.

With a proven track record in performance
engineering, Andrew is passionate about driving
efficiency, ensuring system resilience, and
helping organizations achieve high-performing,
cost effective scalable IT solutions. He often
posts on linkedIn www.linkedin.com/in/
andrewjohnlee/

A company struggling with cloud costs
decided to incentivise its development
and platform team to save costs. They ran
a competition between the teams, and the
team that saved the highest percentage won
a vacation to Hawaii. The initial savings were
fantastic, but after the competition ended,
they grew rapidly as the teams waited for the
next competition!

There is no silver bullet. For long-term,
sustained cost savings and control, embed
cost-efficiency into the company’s psyche.

Cautionary Tale Golden Rule

http://www.linkedin.com/in/andrewjohnlee/
http://www.linkedin.com/in/andrewjohnlee/

46

www.capacitas.co.uk

https://www.capacitas.co.uk

	Chapter 9 Checking You Are Getting It Right

