
Creating Cost 
Efficient Software

W
H

IT
EP

AP
ER



2

Audience	 2	
Introduction	 3
Chapter 1 Every Line of Code Costs	 5
Chapter 2: Code to Match the Workload	 9
Chapter 3: Efficiency is Just Performance, Right?	 14
Chapter 4: When Do I Optimise?	 17
Chapter 5: What Shall I Code In?	 19
Chapter 6: Code to Avoid Wastage	 22
Chapter 7: Getting the Algorithm Right	 26
Chapter 8: Crafting Cost Efficient Code	 30
Chapter 9: Checking You Are Getting It Right	 35
Chapter 10: Checking You Got It Right? You Won’t 	 38
Chapter 11: What About the Soft Costs?	 41
Chapter 12: Making It Stick	 44
Conclusion	 47

Index



3

This white paper is aimed at those responsible for architecting and writing software that will 
run in the cloud.

Audience
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“The cloud is just someone else’s computer, but it is a rental computer.”

Let’s get straight to the point; the code you 
write for software deployed in the cloud directly 
impacts the monthly cloud bill. There was a much 
looser relationship in the past when hardware 
was on-premises. The hardware had been 
purchased years ago, and unless your software 
changes meant there was a need to buy more 
servers, nobody cared. In fact, the infrastructure 
manager probably liked you to use their hardware 
as it justified their decision to buy it all. Now, 
however, if a resource is over or underused, it 
directly relates to the monthly cloud bill.

The wildest days of the cloud have gone, with 
companies rushing to the cloud as the next big 
thing. The giddiness of the new technology has 
been replaced with the dark reality of expensive 
monthly bills with too many unpredictable spikes 
in cost.     There are many news stories of an 
exodus back to on-premises data centres, but 
when you read the details, they are about specific 
workloads and business cases. 

The reality is that the cloud is here to stay, and 
it is now about making sure you design, code 
and operate your applications to maximise the 

benefits of the cloud to produce cost-efficient 
services.

The cloud is naturally cheaper, 
right?

Here is a quick calculation: Take the c6id family 
of AWS instances that use the Intel(R) Xeon(R) 
Platinum 8375C CPU @ 2.90GHz. This is a 64vCPU 
processor, so that would map to the c6id.16xlarge 
instance that costs $11.8k per year if you commit 
to three years. Over 5 years, the TCO would be 
$59K. For the on-premises costs, the processor 
costs $8,000 to $10,000 when new, and let’s put 
that in a server with 128G of memory that will 
cost about $12K and then your cost to rack and 
stack that server per year is about $1K per year. 
Assume after 5 years the server is worthless, then 
you are $17K down. Now, there are other costs 
like finance and support costs, but let’s consider 
the TCO, which could be around $25K. Of course, 
if you used that compute power for just one day 
out of the 5 years, then AWS would have cost 
you $77 compared to $25,000 for running on-
premises.       

Introduction
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So, depending on your hosting and support costs, you could probably buy and run a server cheaper than 
committing to buying the same level of compute through a primary cloud provider. Hence, the challenge is 
to make the move to the cloud worth it. What this illustrates is you must have processes in place to manage 
capacity and develop your software to maximise what the cloud offers.

Now, it is not only the responsibility 
of the software engineer to efficiently 
control costs. Just like regular software 
design, the business must accurately 
provide inputs, such as the expected 
workload into the system. By the way, 
the workload is more than just the 
number of users or transactions per 
second; it also has a shape, particularly 
how the demand varies over the day, 
week, year, etc. The shape of the 
demand curve makes a big difference 
in the decision you need to make as 
a software engineer. Finally, let’s not 
forget the response time requirements 
we give the users. 

I am sure you have heard the phrase the 
cloud is just someone else’s computer. 
To me, that is the challenge and 
opportunity of the cloud. Think of it as 
a rental car; it is just someone else’s 
car, and the world of possibilities opens 
up. You could probably pay less over 
five years to own your own car versus 

having a rental for all that time.  
But you don’t have to rent that car for five years, you could have two cars when you need them, none when you 
don’t. You could take the bus when you are not in a rush or take a plane when you are. 

To write a cost-effective system, you need to remember your compute resource is a rental transport solution. You 
get a discount for committing long-term, and you can flex or even have fancy services. This is where you have the 
opportunity with the cloud to make it cost-efficient. 

As software developers, it is not just about writing efficient code but also maximising the benefits of having rental 
computers. 

This white paper will help you think about and plan for writing cost-efficient software. It will examine both the 
software architecture design, as well as look at the more detailed code level. 
But first, let’s start with the money.



6

Chapter 1 
Every Line of Code Costs

“Price is what you pay. Value is 
what you get.” 

– Warren Buffett

  https://www.crn.com/news/cloud/2024/aws-vs-microsoft-vs-google-cloud-earnings-q4-2023-face-off?page=2

Of course, everything costs. In 2023, 
AWS generated a total of $90.8 billion 
in sales, Google Cloud $33.7 billion and 
Microsoft $96.8 billion in sales. 

In this chapter, I provide some basic 
information about some of the cloud 
services and their costs. It is important 
that you start to think about the choice 
of cloud service for your software 
design, as this starts to have a major 
impact on the cost. 

Take, for example, storage of 
documents which in the past may have 
been held in the database. They may be 
stored more cheaply in object storage 
in cloud using object storage (S3, etc). 
However, you will see you need to 
consider all parts of the billing model to 
determine if that is the best choice.

Below are some general costs based 
on typical cloud service pricing (from 
providers like AWS, Azure, and Google 
Cloud). Please note that actual costs 
can vary depending on the provider, 
region, discount and length of 
commitment:
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For more accurate costs, it’s recommended you 
use a cloud provider’s pricing calculator like 
AWS Pricing Calculator, Google Cloud Pricing 
Calculator, or Azure’s Pricing tool.
Alas, the cost model for service providers is not 
purely one-dimensional, e.g. priced on data 
stored. The cost varies depending on the service 
level offered and other factors, such as the 
frequency and type of accesses to that data. 

Take for example object storage like S3.

1. Storage costs

This is the base cost, which typically depends on 
the amount of data stored per GB. For example, 
AWS S3 charges around $0.023 per GB per month 
for standard storage, with lower rates for archival 
tiers like S3 Glacier or S3 Glacier Deep Archive.

2. Data retrieval and access 

	■ Frequency of Access: If you’re frequently 
accessing data, especially in large volumes, 

you’ll incur additional charges. Different S3 
storage classes are designed for different access 
patterns:

	 o	 S3 Standard is optimised for frequent 	
		  access, but if you choose S3 Infrequent 	
		  Access (IA) or S3 Glacier, you pay lower 	
		  storage fees but higher retrieval costs 	
		  when you access the data.

	■ Data Access Types: Costs also depend on 
the type of operation.:

	 o	 GET requests (retrieving data): Every time 	
		  you read an object from S3, it counts as 	
		  an API request. With millions or billions of 	
		  small files, these costs can add up, as 	
		  you’re billed per 1,000 requests (about 	
		  $0.005).

	■ PUT, COPY, POST, DELETE requests 	
		  (modifying or uploading data): 

	 o	 Similarly, you incur charges every time 	
		  you upload or modify data, even though 	
		  these operations might be cheaper than 	
		  GET requests (about $0.0004 per 1,000 	
		  requests).

Item Estimated Cost

4CPU Compute Optimized $0.10 to $0.20 per hour

4CPU Memory Optimized $0.15 to $0.25 per hour

Storage of 1GB on Fast Disk (SSD) $0.10 to $0.20 per GB per month

Storage of 1GB of S3 (Object Storage) $0.023 per GB per month (AWS S3 standard storage)

Egress Network Traffic (Per GB) $0.08 to $0.12 per GB

Single Call to a Serverless Function (0.5 sec) $0.0000002 per invocation (AWS Lambda)

Monthly Cost for a Publicly Available IP Address $3 to $5 per month

Storing a 1GB Log File $0.03 to $0.10 per GB per month (depending on 
retention period)

Storing a Custom Metric $0.30 to $0.50 per metric per month
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3. Data transfer (egress costs)

Moving data out of S3 to the internet (egress 
traffic) is not free and can add a significant cost, 
especially if you’re serving large files to external 
users. S3 has a data transfer pricing model where 
you are charged for each GB moved out of the 
storage bucket to other AWS services, external 
networks, or even other regions.

4. Lifecycle transitions

S3 offers the ability to automatically transition 
objects between storage classes (e.g., from S3 
Standard to Glacier) based on usage patterns, 
but these transitions are not free. Lifecycle 
management can incur costs if there are frequent 
transitions.

5. Request and metadata overhead

Along with data retrieval, the storage cost also 
involves charges for list requests, metadata 
retrievals, and even checking the existence of 
objects in a bucket. Each interaction with the 
storage, even for simple metadata requests, 
counts toward the number of operations billed.

6. Multipart uploads and unused data

For large files, multipart uploads are used to 
upload data in parts. If a multipart upload fails to 
complete, the stored parts are charged as separate 
objects unless manually deleted.

When it comes to compute resources, remember that the cloud is someone else’s computer, a rental and flexible 
one.  
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1.	 Serverless (Lambda): Pay only for exact 
execution time. Ideal for infrequent workloads 
or scaling on-demand with minimal 
management. You’re charged per millisecond, 
which eliminates the need to maintain servers 
constantly. 
	o	 Cost model: Pay per invocation, great for 	
		 event-driven applications.

2.	 	EC2 On-Demand: Instant access to compute 
capacity with no long-term commitment. 
Perfect for unpredictable workloads where 
flexibility is key. 
o	 Cost model: Pay-per-hour (or second), 	
		 higher flexibility, but at a premium 	
		 compared to reserved models.

3.	 EC2 Reserved Instances: For workloads 
you know will run continuously, 1 or 3-year 
reservations can lead to significant savings 
(up to 72%). You trade upfront commitment 
for lower long-term costs. 
o	 Cost model: Discounted hourly rates in 	
		 exchange for term commitment. 

EC2 Spot Instances: Get unused compute 
capacity at up to 90% off. Spot instances are great 
for fault-tolerant workloads or batch processing 
that can handle interruptions 

However, the trade-off is the uncertainty of 
availability. 
o	 Cost model: Extremely low cost, but your 	
	 instance can be terminated if AWS needs 	
	 the capacity back. 

If you design part of your software to be easily 
interrupted and restarted you could save big by 
using spot instances. Or if you get massive, short 
spikes in demand, maybe you need Lambda.

Not understanding how services are 
costed can lead to unexpected spikes in 
the bill. In his article, software engineer 
Maciej Pocwierz tells of how an S3 bucket 
unexpectedly had a massive spike in cloud 
costs due to unexpected (and, in this case, 
unauthorised) requests to the S3 bucket. 

If you are not getting value from the 
service you are using, choose a different 
service. For example, imagine you have 
to store loads of user documents that are 
produced from survey taking; needed but 
rarely retrieved. Don’t put these in a cloud 
database. Put them in object storage like 
S3. Typically, it is 10x cheaper as long as you 
are not frequently accessing them.

Cloud purchasing models

Cautionary Tale Golden Rule 
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Chapter 2 
Code to Match the Workload

With the cloud, everything costs. But remember, 
we are thinking about these computers as rentals. 
There are many different service models you can 
choose from. The trick is to choose the right model 
for the workload. What do we mean by workload? 
This is the profile of the demand arriving at your 
system over time. 

Systems experience various types of workload 
arrival patterns, each driven by user behaviour, 
time of day, and specific events. One common 
pattern is the daily workload cycle, where system 
activity fluctuates within a 24-hour period. Such 
workloads often peak at predictable times, such 
as just before and after lunch, when users engage 
in routine activities like email checks, data entries, 
or report generation. These systems might show a 
lull in activity during mealtimes or late at night. An 
example would be corporate systems or websites 
with regular business hours that see most of their 
traffic between 9 AM and 5 PM.

Another distinct pattern is a spiky or bursty 
workload, which features sudden, intense spikes 
in activity at specific intervals. These spikes are 
often associated with special events, such as ticket 

sales, product launches, or flash sales, where 
thousands or millions of users try to access the 
system simultaneously within a short time frame. 
These systems require robust scaling capabilities 
to handle the abrupt surges in traffic without 
overloading. Conversely, some systems may 
experience a constant or steady workload, where 
the load remains relatively uniform throughout 
the day. These systems are typically used for 
services that need to be accessible around the 
clock, such as public APIs or monitoring systems.

Seasonal workloads represent yet another 
category. These systems show pronounced activity 
peaks at certain times of the year. For instance, an 
online tax-filing system would see minimal usage 
for most of the year but experience a dramatic 
increase in traffic leading up to the tax submission 
deadline. Similarly, retail systems experience 
heightened activity during holiday seasons like 
Black Friday or Christmas. Understanding these 
patterns helps in designing systems that can scale 
dynamically to handle varying loads, ensuring 
optimal performance and user experience.

“Assumptions are the termites of relationships.” 

– Henry Winkler, Actor
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Consider this example when it comes to even 
vs. spiky workloads, with prices based on AWS. 
Assume you need to process 1,123,200 requests 
per day. If the requests arrive evenly, you can 
benefit from purchasing an EC2 Reserved 
Instance. But if the workload is spiky, a serverless 
approach like AWS Lambda might be more cost-
effective. 

Example Calculation

You have an API request that takes 1 second and 
uses 1 CPU second along with 512MB of memory.

Compute Instance

For an even workload, that’s 46,800 transactions 
per hour. Since each transaction takes 1 CPU 
second, that equals 46,800 CPU seconds per 
hour. A 16vCPU instance provides 57,600 CPU 
seconds per hour (16 * 3,600), which results in 
80% utilisation — near the optimal performance 
threshold before degradation occurs. In this case, 

you’ve hit the sweet spot.
AWS offers a 16vCPU/32GB Graviton instance for 
$8.40/day as a Reserved Instance (with a one-year 
commitment).

Serverless Option

With AWS Lambda, the cost is based on memory 
usage and duration, plus a fee per transaction. 
A single 512MB, one-second request costs 
$0.0000067, and for 1,123,200 daily transactions, 
the total cost is $7.73, including a $0.20 fee per 
million requests.

Surprisingly, Lambda is competitively priced in 
this scenario, compared to an even workload 
running on a Reserved Instance.

When accounting for spiky workloads using On-
Demand and Reserved Instances, I’ve estimated 
the use of 24 x 16vCPU boxes for simplicity. As 
expected, Lambda comes out as the winner for 
spiky workloads.

This doesn’t mean compute instances are obsolete, and you shouldn’t always default to Lambda. The billing 
model is complex, and I haven’t included storage or network costs. But it’s interesting to see how costs change 
when the API becomes more memory-intensive with daily cost being $14.94 at 1024MB and $29.99 at 2048MB.

Even versus spiky workloads – putting them 
into context

Arrival Pattern Compute Daily Cost

Even Arrival 1x 16vCPU Reserved Instance $8.40

Even Arrival Lambda @512MB $7.73

Spike Arrival Lambda @512MB $7.73

Spike Arrival 24x 16vCPU On-Demand $13.20

Spike Arrival 24x 16vCPU Reserved Instances $201.60
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The above example shows the importance of mapping the right service to the 
workload. Understanding what services will be your biggest cost drivers is also 
important. Once you know these, you can focus on them to make sure you 
are picking the appropriate services and solutions to efficiently control your 
costs. Of course, the earlier you can identify the cost driver, the better you are 
at controlling them. Unfortunately, early in the project, there are often many 
unknowns and assumptions. 

However, Cost Per Active User =            Cloud Costs
				                 Number of Actice Users

it is always worth doing a bit of napkin math when making architectural 
decisions. Of course, I am a number geek, so I will often use Excel (see next page). 
Remember, each project is different.

What am I designing to?
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Network Monthly Unit Cost Units Total

Egress (Data out of the cloud) 2000 0.05 GB 100

Inter-Region (Geo - Regions) 1000 0.02 GB 20

Inter-Zone (Transfer across availability zones) 500 0.01 GB 5

Static Costs (IP costs, etc)

Compute

Serverless 10000000 0.000007 Invocations 70

On-Demand

Compute Optimised 40 25.92 per CPU 1,037

Memory Optimised 40 38.88 per CPU 1,555

Reserved/Saving Plan (Typically 30% cheaper)

Compute Optimised 80 18.144 per CPU 1,452

Memory Optimised 120 27.216 per CPU 3,266

Spot Instances (Typically 70% cheaper)

Compute Optimised 7776 per CPU 0

Memory Optimised 11664 per CPU 0

Storage

Object Storage 5000 0.005 per GB 25

Block Storage (SSD, HDD) 10000 0.1 per GB 1000

Really Really Fast Storage 5000 0.4 per GB 2000

File Storage/Backup 75000 0.2 per GB 15000

Access Costs (10% of Storage)

Other

Very project dependent...

Total PCM 25,529
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As a rule of thumb, the ratio should be 50% compute, 30% storage, 10% network, and 10% other. 

These calculations just need to be rough. This is about getting you into the mindset of understanding what 
drives your costs and where you may need to look to optimise. For example, you discover your storage costs are 
significant, so think: Are you using the most appropriate cloud service to store your data? Can you reduce the 
data size, etc.?

A customer redesigned their software to 
automatically scale compute resources with 
demand. However, their workload demand 
was pretty static during the working week 
and minimal at the weekend. They could 
have saved that effort if they had just written 
a script to turn off some computers at the 
weekend! 

Do rough cost calculations early in the 
project to help steer the architectural 
decisions. Don’t get sidetracked by trying to 
make these overly accurate. This is all about 
identifying major cost drivers and making 
sure you are making appropriate cost-
saving architectural decisions.

Cautionary Tale Golden Rule 
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Chapter 3 
Efficiency is Just Performance, Right?

Surely, performance 
and efficiency are 
the same?

Let’s start at the beginning. Performance is a 
broad term, which many people often associate 
solely with speed (i.e., “Is it fast enough?”). 
However, there are more elements involved, and 
it’s crucial to consider how the system reacts 
under different workload levels. For example, 
users might experience good response times when 
there are only a few users, but the system may 
become significantly slower when many people 
are using it simultaneously.

The early bird may get the worm, but the second mouse gets the cheese!
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In principle, software performance refers to “how 
well the software runs” and consists of four core 
execution elements that you can either improve or 
sacrifice: 

	■ Accuracy: The number of errors that 
occur while executing a task. A system that 
quickly returns HTTP 500 errors is not a high-
performance system. 

	■ Speed: How fast the work is done to 
complete a task. This can be observed in terms 
of response times or throughput. Response 
time refers to the time taken to execute a task, 
while throughput indicates the number of tasks 

completed per time unit.
	■ Efficiency: A measure of the resources 

used to complete a task. If one sorting 
algorithm takes 5 CPU seconds compared to 
another that takes 50 seconds, the first is more 
efficient. You must remember that efficiency in 
relation to cost has multiple dimensions, such 
as CPU, memory, and network usage, all of 
which have associated costs. 

	■ Scalability: The ability of the system to 
handle an increased volume of workload.

This is generally true. The fewer resources you use, 
the quicker the code will execute. However, this 
is not always the case — sometimes, we sacrifice 
efficiency to improve speed. For example, we 
might cache results to reduce response times, but 
this could negatively impact memory efficiency.

Next, you need to consider how to maximise your 
resources. There’s little point in optimising code to 
use less CPU, for example, unless you can actually 
leverage the cloud and downsize the amount of 
CPU you use. 

Before we continue, I need to provide a bit of 
background on the concept of the utilisation 
sweet spot.

Unlike storage space, where you can be at nearly 
100% utilisation without degradation, CPU 
utilisation is more complex. The graphs below 
illustrate the relationship for a single server. In all 
four graphs, the x-axis is an increasing workload 
e.g. number of users or transactions per second. 

The top left graph shows response time, and 
the key here is that at around 70-80%, response 
times will degrade probably to the point users 
will complain. At the 70-80% point this is where 
you have hit the sweet spot of the lowest cost per 
transaction. You have a static cost for the server as 
seen in the bottom left, but a decreasing cost per 
transaction as you increase workload see bottom 
right.

Is more efficient code faster?
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Most major cloud providers offer compute 
resources in what they call “t-shirt sizes.” 
Typically, these sizes double the number 
of CPUs as you move to the next larger 
box. Therefore, efficiency gains often need 
to exceed 50% to justify a change in size. 
The good news is that if your software is 
currently inefficient, achieving these gains is 
likely possible.

 Aim to maximise the usage of all your 
compute resources and remember to 
do this as your workload increases and 
decreases throughout the day. 

Cautionary Tale Golden Rule 
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Chapter 4 
When Do I Optimise?

“Any design, whether for a bridge or 
a building, must start with a solid 
foundation. If the foundations are 
not right, everything else will be 
wrong.” 

- Henry Petroski, Engineer

Not every line of code needs to be efficient. You 
are losing money if the software costs more to 
make efficient than it saves. However, as we 
know, if we don’t start with firm foundations, we 
will never get it right. I have always liked Connie 
Smith’s (author of Performance Engineering of 
Software Systems) example, which says it is much 
easier to build an energy-efficient house from 
the ground up rather than retrofit (I can relate to 
living in a house over 350 years old and is painful 
to heat). 

However, there is also Donald Knuth’s view  
from his book Computer Programming as an 
Art (1974) that “premature optimization is the 
root of all evil.” Interestingly, the full quote from 
the book is more nuanced: “The real problem is 
that programmers have spent far too much time 
worrying about efficiency in the wrong places 
and at the wrong times; premature optimization 

is the root of all evil (or at least most of it) in 
programming.”

 So, who is right? When do you start writing 
efficient code? Well, I think both Donald and 
Connie are right. You just need an approach 
proportional to what you want to achieve. The key 
to successful optimisation is focusing on efficiency 
in the right places.

From the beginning, you must understand the 
big cost drivers and choose an appropriate initial 
architecture/design. Of course, this is one of those 
things that is easy to say but difficult to do as you 
are dealing with a lot of ambiguity at this stage. 
I recommend listing the known drivers and the 
assumptions you are making to aid clarity and 
allow stakeholders to correct the fundamentals.
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Communicate the efficiency objectives to the 
teams. It is pointless to identify that user cases or 
code areas will be the most cost-critical without 
telling the developers this information.

Measure and test to ensure you are getting the 
performance and efficiency you want. Use the 
data from this to refine what changes need to be 
made to improve efficiency. As Dr Werner Voges 
says, as part of his Frugal Architect laws , cost 
optimisation is incremental. 

“The pursuit of cost efficiency is an ongoing 
journey. Even after deployment, we must revisit 
systems to incrementally improve optimization. 
The key is continually questioning and diving 
deeper. Programming languages provide profiling 
tools to analyse code performance, and while 
these require setup and expertise, they enable 
granular analyses that can lead to changes that 
shave milliseconds. What may seem like small 
optimizations accumulate into large savings at 
scale.”

I discuss benchmarking and monitoring in Chapter 9: Checking you are getting it right? 

A company didn’t do any cost analysis and 
migrated all the data from their on-premises 
system to the cloud. The data was stored on 
expensive disc rather than object storage. 
The reality was very few customers used 
any data over two years old. Had they 
identified this before migration, they could 
have archived the data to cheaper storage or 
rewarded customers for deleting data. 

Don’t let procrastination stop you from 
making decisions but also don’t just make 
design decisions. Do a bit of analysis to 
support them!

Cautionary Tale Golden Rule 

  https://www.thefrugalarchitect.com/laws/cost-optimization-is-incremental/ 
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Exploring efficient language – an academic 
point of view 

Chapter 5 
What Shall I Code In?

 “It is in your moments of decision that your destiny is shaped.” - Tony Robbins

In this chapter, I want to address the subject of language choice. This is a tricky subject for many reasons. Firstly, 
many organisations have defined policies around the languages they will use. Stepping out of that box may not 
be allowable. Secondly, a more efficient programming language is not a panacea; inefficient code can be written 
in an efficient language. Thirdly, sometimes the code choice is irrelevant. 

However, what is the most efficient programming language?

To be honest, I don’t know. This is an area of research that needs more focus, but I will touch on it briefly below.

The most commonly referenced paper I see 
on social media is “Energy Efficiency Across 
Programming Languages: How Do Energy, Time, 
and Memory Relate?” by Pedro R. Pereira, Marco 
Couto, et al in 2017 . The paper investigates 
the relationship between energy consumption, 

execution time, and memory usage across 27 
programming languages. The authors sought to 
provide empirical data to inform developers on 
how language choice impacts software efficiency. 
Using a set of well-defined benchmarks, they 
measured each language’s performance in terms 
of time, memory, and energy usage. 

  https://www.thefrugalarchitect.com/laws/cost-optimization-is-incremental/ 
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The study found significant differences between 
languages, with lower-level languages like C, C++, 
and Rust typically performing better in terms 
of energy efficiency, time, and memory usage, 
compared to higher-level languages like Python 
and Perl. However, if you are looking for a clear 
winner we are out of luck. Overall, C was the 
fastest and used the least energy, but Pascal used 
the least memory.

An important insight from the research is that 
faster execution times do not always correlate 
with lower energy consumption. Some languages, 
while fast, consume more energy due to factors 
like inefficient memory access patterns or 
garbage collection processes. For example, Java 
may perform relatively well in terms of execution 
time, but its memory management features, 
such as garbage collection, can result in higher 
energy usage. Conversely, some languages may 
take slightly longer to execute a task but consume 

less energy due to more efficient memory usage 
and resource management. This challenges the 
common assumption that optimising for speed 
will inherently reduce energy consumption.

The study emphasises the need for developers 
to balance energy, time, and memory efficiency 
based on the specific requirements of their 
project. While low-level languages like C and Rust 
offer the best overall balance of performance, 
developers working on higher-level languages 
may still need to optimise energy efficiency, 
particularly in contexts like mobile devices or data 
centres where power usage is a major concern. 

The key takeaway is that the most energy-
efficient language is not always the fastest, and 
careful consideration of all three metrics — time, 
memory, and energy — is essential for efficient 

software development.
You will have the same issue from a cost 
perspective: Fast does not always mean efficient. 
A faster language may use more resources than a 
slightly slower language, hence “cost” more. 

Of course, low-level languages (C, Rust), aka 
compiled languages, are often the most cost-
efficient. The hard work of translating the code 
down to the processor instructions (machine 
code) is done once at compile time. These 
languages often require the programmer to 
manage memory and system resources directly. 
Because of their proximity to the hardware, they 
offer better performance and control over how the 
machine operates, typically making them suitable 
for performance-critical applications. However, 
low-level languages can be more challenging to 
write and maintain due to their complexity and 

lack of abstraction.
High-level languages (Python), aka interpreted 
languages. This is where a program directly 
executes the instructions of a high-level 
programming language by translating them line-
by-line into the processor instructions without 
needing to compile the entire program first. This 
process typically adds an overhead in CPU and 
memory costs, hence the cost. However, they 
provide greater abstraction from the machine’s 
hardware, allowing developers to write code in 
a way that is often more intuitive and closer to 
human languages. They manage many low-level 
details like memory allocation, system resources, 
and hardware interaction behind the scenes, 
which makes them easier to write, read, and 
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A company was worried about their 
spending on a particular serverless function. 
The cost model for these calls was based on 
the memory used and the duration of the 
function. The engineer felt that it was down 
to the function being written on C#, and they 
opted to re-write the function in Rust as it 
was more efficient. However, the savings 
were minimal. That was because, for that 
particular function, the majority of the time 
was spent calling and waiting for a response 
from a database server! When analysed, 
the C# code was responsible for 10% of the 
overall response time, so any improvement 
to it made little impact on the cost.

Remember the overhead of programming in 
a more efficient language must save more 
than any increase in development and 
support costs. You also need a supply of 
developers that know the language!

Cautionary Tale Golden Rule 

it right)
Of course, what complicates this is that you can 
use code libraries in interpreted languages that 
are pre-compiled, and hence, some parts of your 
code can run as efficiently as compiled languages. 
For example, using the NumPy library in Python 
for matrix calculations is significantly faster than 
the native code. 

Here is a cost-efficient chart, as yet not drawn to 
scale. Please do your own investigation.

maintain.
There are languages like Java/C#, which are a 
sort of hybrid; they get compiled to byte code 
that is then interpreted. Techniques like Just In 
Time Compilers can be used. This is where the 
first time code is interpreted. However, if the 
code is frequently executed, then it is compiled 
to machine code. This is a great feature but does 
make it a challenge when benchmarking and 
testing (see Chapter 9: Checking you are getting 
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Chapter 6 
Code to Avoid Wastage
“The most cost-efficient code is often the code you don’t write.” 

- Andrew Lee

Please excuse the self-promotion of this quote, 
but I want to make the point that every feature 
you code is likely to have a cost in the cloud. 
Some will be low, and some will be high. The key 
is making sure you are prepared to question the 
value!

Of course, there are other code-related changes 
you can implement that will help with cost 
control. Many of these techniques are core to 
building cloud native systems. Cloud native 
systems are software applications that are built 
to run in a cloud computing environment. Cloud 
native applications are designed to be scalable, 
resilient, and easy to manage. 

Below are some of the techniques you can code 
into your software to avoid wastage and make it 
cheaper/easier to manage.

1. Load shedding 

	■ Definition: Load shedding involves 
temporarily offloading non-essential processes 
during peak demand or high-cost periods to 
minimise overall expenses. 

	■ Benefit:
	 o	 By offloading or delaying less critical 	
		  processes, organisations can reduce the 
 		  total compute and storage resources 	
		  consumed, thereby lowering their cloud 	
		  costs.
	 o	 This approach is particularly beneficial 	
		  during sudden spikes in demand, which 	
		  can lead to unanticipated cost increases 	
		  if not managed effectively. 
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		  based on real-time pricing fluctuations 	
		  and resource availability.
4. Load throttling to avoid over-provisioning

	■ Definition: Load throttling involves 
dynamically regulating the rate of incoming 
requests or transactions during periods of 
high demand to prevent the system from 
overloading resources. 

	■ Benefit:
	 o	 Load throttling allows software  
	 to  handle peak loads without requiring 	
	 excessive provisioning of resources, which 	
	 would remain underutilised during normal 	
	 operation.
	 o	 By controlling the rate of incoming tasks, 	
	 the system can prevent performance 		
	 degradation while staying within cost-	
	 efficient resource limits.
	 o	 Reduces the need for upfront investment 	
	 in high-capacity infrastructure and ensures 	
	 that resources are right-sized to meet 	
	 average rather than peak demand.
	 o	 Load throttling also allows more 		
	 predictable performance and cost 		
	 management during demand fluctuations, 	
	 providing a buffer against sudden surges 	
	 without additional expenses. 

5. Shifting non-critical workloads to off-peak 
periods 

	■ Definition: Non-critical workloads, such 
as data backups, batch processing, or analytics 
tasks, can be scheduled to run during off-peak 
hours when resource utilisation and demand 
are low. 

	■ Benefit:
	 o	 Maximises the usage of available  
		  resources by shifting less urgent tasks 	
		  to times when the system would 		
		  otherwise be underutilised.
	 o	 Reduces the likelihood of resource 	
		  contention during peak hours, thereby 	
		  enhancing the performance of critical 	
		  workloads.
	 o	 Off-peak scheduling allows organisations 	
		  to take advantage of lower-cost resources 	
		  or spot pricing during non-peak times, 	
		  further optimising overall cloud spend.
	 o	 By balancing the workload across 	
		  different time periods, businesses can 	
		  ensure a more stable and predictable 	

	 o	 Load shedding ensures that systems 	
		  remain responsive for high-priority tasks 	
	 while deferring less critical activities to less 	
	 costly times.  
 
2. Prioritisation of gold paying users 

	■ Definition: Not every user in your system 
will pay the same or have the same service 
level. Writing your code to prioritise/schedule 
these users avoids the situation where all 
users are treated equally in the system and 
additional resources are required to offer  that 
level of service to all. 

	■ Benefit:
	 o	 Guarantees that mission-critical 		
		  processes (e.g., financial transactions, 	
		  data writes) are not impacted during 	
		  resource contention, maintaining high 	
		  service quality and reliability.
	 o	 Enables better control over resource 	
		  allocation by distinguishing between 	
		  essential and non-essential activities, 	
		  reducing unnecessary consumption of 	
		  expensive resources.
	 o	 Creates an opportunity to reduce costs 	
		  without compromising user experience, 	
		  as essential functions are protected even 	
		  during cost-cutting measures. 

3. Leveraging spot pricing with stop and 
resume processing

	■ Definition: Cloud providers offer spot 
instances at significantly reduced prices for 
spare capacity. However, these instances can 
be terminated with short notice, making them 
ideal for interruptible workloads. 

	■ Benefit:
	 o	 The use of spot instances can reduce 	
		  compute costs by up to 90% compared 	
		  to on-demand instances, which makes it 	
		  an attractive option for batch processing 	
		  or non-urgent computational tasks.
	 o	 By designing software that can gracefully 	
		  handle interruptions — saving state and  
		  resuming processing as required — 	
		  organisations can optimise for the lowest 
	  	 possible cost while maintaining 		
		  operational integrity.
	 o	 Spot pricing enables more granular 	
		  control over spending, as processes 	
		  can be dynamically paused and resumed 	
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		  resource usage pattern, leading to better 
		  overall system efficiency and cost 		
		  savings.

6. Data archiving and deletion policy

	■ Definition: A data archiving and deletion 
policy involves systematically identifying, 
archiving, or deleting data that is no longer 
actively used or required. This can include old 
log files, stale transactional data, or backups 
that have surpassed retention policies. 

	■ Benefit:
	 o	 Cost reduction: Reduces storage costs 
		  by minimising the amount of data 	
		  retained in expensive storage solutions. 	
		  Organisations can achieve significant 	
		  savings by archiving less frequently 	
		  accessed data to cheaper, lower-tier 	
		  storage.
	 o	 Improved performance: Reducing 	
		  the active data footprint can enhance the 
 		  performance of databases and 		
		  applications by lowering the time it takes 	
		  to process and retrieve information.
	 o	 Regulatory compliance: A defined 	
		  data archiving and deletion policy 	

		  ensures that data retention aligns with 	
		  legal and regulatory requirements, 	
		  reducing the risk of non-compliance 	
		  penalties.
	 o	 Simplified maintenance: Regular  
		  data cleanup minimises clutter and 	
		  simplifies the management and 
		  maintenance of cloud resources, 		
		  enabling better monitoring and cost 	
		  control.
	 o	 Enhanced security: Deleting outdated or 	
		  unused data reduces the potential 	
		  attack surface, improving overall security 	
		  posture by minimising exposure to 	
		  vulnerabilities and reducing the impact 	
		  of data breaches. 

7. Dynamic Resource Allocation and 
Elasticity

	■ Definition: Cloud-native software is 
designed to automatically scale resources up 
or down based on real-time demand and usage 
patterns, ensuring optimal resource utilisation. 

	■ Benefit:
	 o	 Elastic scaling allows software to adapt  
		  to changing loads, minimising over-	
		  provisioning and the associated costs of 	
		  unused capacity.
	 o	 By dynamically allocating resources, 	
		  organisations can maintain optimal 	
		  performance during peak times without 	
		  incurring unnecessary costs during low-	
		  demand periods.
	 o	 This adaptability is crucial for managing 	
		  variable workloads, and it also supports 	
		  leveraging cost-effective resources, such 	
		  as spot instances, whenever possible.

While doing a cost optimisation exercise, 
an engineer discovered that the sizing of 
the database (and hence the costs) was 
driven by a few demanding SQL queries. The 
queries themselves were pretty optimal. 
It was just that as the company grew its 
customer base, they disproportionately 
became more demanding. This was 
because they were creating friend-type 
recommendations, and as more people 
joined, the complex connection logic would 
run longer.

The code ran for every login and featured the 
recommendations on the portal page hoping 
to encourage people to click through on 
the recommendations. Delving deeper into 
the web analytics, they noticed that hardly 
anyone used the functionality as it wasn’t a 
core feature; in discussion with the business, 
it was decided to disable this feature to save 
money! 

The features you add and remove that make 
your code efficient are as important as the 
way you write them.

Cautionary Tale 

Golden Rule 
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Understanding algorithm efficiency

Chapter 7 
Getting the Algorithm Right

There’s a well-known joke about a tourist in Ireland who asks one of the locals for 
directions to Dublin. The Irishman replies: ‘Well sir, if I were you, I wouldn’t start 
from here’.

Algorithm design plays 
a fundamental role in 
determining the efficiency 
and performance of computer 
programs. A well-designed 
algorithm can drastically 
reduce the time and resources 
required to solve a problem, 
while a poorly designed one 
can make even simple tasks 
computationally expensive. 
The impact of good algorithm 
design is so significant that 
it often determines the 
feasibility of solving complex 
problems within a reasonable 
timeframe. This is where 
concepts like asymptotic 
notation, particularly Big-O 
notation, become critical for 
understanding and comparing 
the efficiency of different 
algorithms.

When discussing algorithm efficiency, we are 
primarily concerned with how the amount of 
work (e.g., time or memory) required scales with 
the size of the input. This scaling behaviour is 
captured using Big-O notation, which describes 
the upper bound of an algorithm’s growth rate.
 
For example:

	■ An algorithm with a time complexity of 
O(n) means that the time it takes to execute 
grows linearly with the size of the input. 

	■ An algorithm with O(n2) complexity 
means that the time required increases 
quadratically with input size, i.e. doubling the 
input size would increase the time by a factor 
of four.
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Why Big-O Notation MattersChapter 7 
Getting the Algorithm Right Big-O notation provides a way to express how much more work an algorithm requires as the input size increases. 

For instance, consider two algorithms for summing the elements in a list of numbers:
1.	Algorithm A has a time complexity of O(n).
2.	Algorithm B has a constant time complexity of O(1).

For small inputs, both algorithms might perform similarly. However, as the input size increases, Algorithm B, with 
its O(1) complexity, will become significantly more efficient compared to Algorithm A. 

The following table illustrates this difference:

The values in the table show the number of operations each algorithm would perform for different input sizes. 
As the input size increases, Algorithm A’s work grows linearly, while Algorithm B’s work remains constant, 
demonstrating a significant reduction in computational effort due to better algorithm design.

Example: Summing the Elements in a List

Let’s consider a concrete example to illustrate how different algorithm designs can impact the efficiency of 
solving a problem.

Problem: Given a list of numbers, find the sum of all elements.

Naive Algorithm: Use a loop to iterate through each element and add them together.

 public class SumNaive {
  public static int sumNaive(int[] arr) {
   int total = 0;
   for (int num : arr) {
    total += num;
   }
   return total;
  }

  public static void main(String[] args) {
   int[] numbers = {1, 2, 3, 4, 5};
   System.out.println(“Sum: “ + sumNaive(numbers)); // Output: 15
  }
 }

Input Size (n) Algorithm A: O(n) Algorithm B: O(1) 

10     10 operations    1 operation   

100    100 operations    1 operation   

1,000    1,000 operations   1 operation   

10,000    10,000 operations   1 operation   
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Time complexity: This approach iterates through each element once, resulting in a time complexity of O(n).

Optimised algorithm: Use the mathematical formula for summation of an arithmetic series: 

For a list containing numbers from 1 to n, the sum can be calculated using the formula: 
					     Sum=(n(n+1))
						        2

 public class SumOptimized {
  public static int sumOptimized(int n) {
   return n * (n + 1) / 2;
  }

  public static void main(String[] args) {
   int n = 5; // Sum of numbers 1 to 5
   System.out.println(“Sum: “ + sumOptimized(n)); // Output: 15
  }
 }

- **Time Complexity**: This formula uses only a few arithmetic operations, regardless of the input size, resulting 
in a constant time complexity of O(1).

For a list of 1,000,000 elements, the naive algorithm would require 1,000,000 operations, while the optimised 
algorithm would need only a single operation — a dramatic reduction in computational work.

The importance of algorithm design in practice

Algorithm design and analysis are not just academic exercises. They have practical implications for a wide range 
of applications, from data processing to machine learning, database management, and more. For instance, search 
engines rely on sophisticated algorithms to quickly retrieve relevant information from vast amounts of data, 
while encryption algorithms ensure secure communication by making decryption infeasible within reasonable 
timeframes.
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Conclusion

Algorithm design is a powerful tool for optimising code and reducing computational work. By leveraging 
techniques such as asymptotic analysis and Big-O notation, developers can choose or design algorithms that 
scale well with input size, thus minimising computational resources. In practice, selecting an appropriate 
algorithm can transform an otherwise infeasible problem into one that can be solved efficiently, making 
algorithm design an essential skill for programmers and computer scientists alike.

While choosing algorithms with better 
asymptotic complexity is generally 
beneficial, it’s important to consider that 
algorithms with lower theoretical time 
complexity are not always faster for small 
inputs in real-world applications. This is 
due to the constant factors and overhead 
involved in some optimised algorithms.

Always aim for the simplest algorithm that 
achieves the desired outcome with the least 
amount of work.

This means choosing an algorithm 
that solves the problem correctly while 
minimising computational resources, 
ensuring efficiency. 

Cautionary Tale Golden Rule 
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Chapter 8 
Crafting Cost Efficient Code

“More computing sins are 
committed in the name of efficiency 
(without necessarily achieving it) 
than for any other single reason — 
including blind stupidity.”

— William A. Wulf

When it comes down to crafting lines of code for efficiency, the mantra is less is more. That is, less resource used 
(CPU/Disk/Storage etc.) means more cost savings. You must think about the concept of work i.e. the amount of 
CPU cycles or data that needs to be processed. The more you can write your code to do the required functionality 
in the least amount of CPU cycles or memory, the better. 

Below are eight techniques for minimising the work you need to do. Remember, sometimes there is never a 
single solution

1. Reduce the amount of work or data you store. This is probably the key optimisation that you can do. This 
could be a fairly simple optimisation. For example, using Precomputation to calculate frequently used values 
ahead of time and storing them to avoid repeated computation during runtime. This is particularly powerful 
when used to optimise loops (known as hoisting). This can be seen in the loop example below:

int factor = x * y; // Factor is calculated once before the loop
  for (int i = 0; i < numbers.length; i++) {
   sum += numbers[i] * factor;
  }
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Chapter 8 
Crafting Cost Efficient Code

Another example may be as simple as using short-circuiting. This is for logical operators, where the execution will 
skip the processing of the subsequence operands if any fail. This is achieved in some languages using (e.g., `&&` 
or `||` in C-style languages). Hence, if you look at the code snippet below, then in that case, it would output 4 as 
the first conditional is false, and the second is not executed.

public static void main(String[] args) {
 int a = 10;
 int b = 4;

 if (a == 0 && ++b == 5) {
  //Do Stuff;
 }
 System.out.println(b);

2. Be careful of the trade-off between data and compute. You may save memory space by encoding data 
but spend more CPU computational time encoding and decoding it. You have to decide what will be the biggest 
cost dimension for this. For example, if you have lots of data but do very little processing, then encoding that 
data will be better.

3.Reuse things that you would have to compute again. This is more of a tricky optimisation as memory 
costs, so you have to get benefit from anything you save. Also, caching data may benefit response time! Again, 
you are in the cost vs. response time trade-off. However, common-subexpression elimination helps with coding 
efficiency.

4.Exploit. If libraries or native functions exist to do things you need to do, check them out. They may very well 
be faster than the code you can write. This is particularly true with higher-order languages that are interpreted, 
as libraries may be directly pre-compiled and run super efficiently. Java provides a variety of optimised methods 
in the Java.util package, such as Collections.sort() for sorting lists.

5.Sympathise. There is the concept of Mechanical Empathy. This is originally a quote from British Racing Driver 
Jackie Stewart: “You don’t have to be an engineer to be a racing driver, but you do have to have Mechanical 
Sympathy”. This is about writing code that makes the most of the underlying hardware. 
For example, can writing your code to maximise the process cache improve efficiency? To illustrate the effect of 
the cache, consider the task of summing all the elements in a 2D matrix. We simply loop through each element, 
adding the element’s value to the sum. We have a choice to iterate row by row or column by column. The code to 
iterate row by row is shown below:

for i in range(Size): 
    for j in range(Size): 
        sum += x[i][j] 
 
To change it to column by column, you would just adjust the array indexing to: 
 
sum += x[j][i] 

Now, we would expect that regardless of the iteration choice, the programs should take an equal amount of time. 
However, when I ran tests for various matrix sizes, there was a distinct difference in the execution time.
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first row is loaded into the cache, it prefetches the next row. Since row-by-row iterations match this prefetching, 
more data can be retrieved from the cache, thus improving performance. Additionally, the cache is 64-bit, so if 
each element of the matrix is smaller than this, you will get multiple elements per cache line.

It’s interesting to note, one thing that is often forgotten is that retrieving memory from the CPU cache or main 
memory is counted as part of CPU time.

6. Match the data structure you choose to the operations you are doing. For example, you could store 
data in an array, list or a Hashmap. Each of these offers different efficient characteristics depending on what type 
of operations and what dimension you want to be efficient. For example, the most efficient for an index lookup 
could be an array when compared to the others but an array needs to be fixed size. This means that if the array is 
sparsely populated you will not be memory efficient. Again, this is a case of understanding the usage(workload) 
and requirements to choose the best fit. 

7. Predict. Write your code in the order you think it will get executed to aid branch prediction. Writing code in a 
way that aids the CPU’s branch prediction mechanisms can lead to significant performance improvements. This 
often involves structuring if-else blocks such that the most likely branches are evaluated first. Even if you are not 
worried about branch prediction on the CPU the idea of ordering tests is to perform those that are more often 
successful. Similarly, inexpensive tests should precede expensive ones.

Inefficient code by not combing the tests

if (age >= 18) {
 if (salary >= 40000) {
   if (hasGoodCredit) {
   System.out.println(“Eligible for a loan.”);
    }
  }
 } else {
   System.out.println(“Not eligible for a loan.”);
 }
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Combing tests and using short circuiting for improved efficiency

 if (age >= 18 && salary >= 40000 && hasGoodCredit) {
   System.out.println(“Eligible for a loan.”);
  } else {
   System.out.println(“Not eligible for a loan.”);
  }

8. Test / experiment. Now this is not easy. If you are really looking at optimising code, test your trade-offs (see 
the next chapter). Also, don’t underestimate the power of explaining your code to another developer. You will 
probably spot optimisations if you talk it through!

A development team combined Java 
functions with the aim of reducing the 
overhead of calling the function. However, in 
the test, this had a negative effect as Java’s 
Just-In-Time (JIT) compiler can optimise 
small functions by inlining them. In addition, 
this also improves the cache hit ratio on the 
processor. (Good job they tested their code!).

Remember, to optimise what needs to be 
optimised not what you want to optimise

Cautionary Tale Golden Rule 



34

Chapter 9 
Checking You Are Getting It Right

 “Programming today is the 
opposite of diamond mining. In 
diamond mining you dig up a lot of 
dirt to find a small bit of value. With 
programming you start with the 
value, the real intention, and bury it 
in a bunch of dirt.”

— Charles Simonyi

During the development cycle, you will need to 
determine if certain pieces of code are efficient 
enough, or you may need to benchmark code to 
help you make the right decisions. These small 
developer-led benchmarks are called micro 
benchmarks. 

Typically, micro benchmarking involves measuring 
the performance of very small sections of code, 
usually individual functions or small code blocks. 
Micro benchmarking helps identify inefficiencies 
in specific parts of code, enabling developers 
to optimise critical sections. It provides insights 
into how various algorithms and data structures 
perform, especially under different scenarios or 
inputs. This allows for comparison of different 
implementations, be it a function or algorithm or 
maybe which library to use. A mature organisation 
may incorporate this into their development 
pipelines to help detect performance and 
efficiency.

If you are going to benchmark, the trick is 
getting it right, such that the decisions made 
when running code locally in a development 
environment work just as well in a production 
environment with real world data.
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Chapter 9 
Checking You Are Getting It Right

Common pitfalls of micro benchmarking

1. Lack of context: Micro benchmarks measure 
the performance of isolated code segments, 
often ignoring broader context, such as memory 
hierarchy effects, network latency, or interactions 
with other parts of the application. 

2. Compiler optimisations: Modern compilers 
can optimise code in surprising ways. For 
example, the compiler might remove or change 
certain code paths when it determines that the 
results are not used. This can lead to inaccurate 
measurements. For example, Java uses Just in 
Time compilation, and this may or may not occur 
when you run your benchmark in the same way as 
production.

3. Unstable measurements: Small code 
segments can produce noisy results due to 
variations in system state (CPU frequency scaling, 
background tasks, etc.). Ensuring stability and 
consistency in measurements can be challenging.

4. Hardware and OS dependencies: The 
results of a micro benchmark can vary widely 
based on the underlying hardware (CPU, memory, 
cache) and the operating system. Benchmarks on 
one machine might not generalise to others.

5. Ignoring Real-World Scenarios: Micro 
benchmarks often use idealised inputs and 
configurations that do not represent typical usage 
patterns, leading to misleading conclusions about 
actual performance.

As you can see above there are a lot of bear traps 
to grab you when you execute micro benchmarks. 
So, what can you do to help avoid these?

	■ Run multiple iterations: Run the 
benchmark many times and calculate 
statistical measures like mean, median, and 
standard deviation to get reliable results. 

	■ Use appropriate tools: Use dedicated 
benchmarking libraries or tools like Google 
Benchmark for C++, Benchmark.js for 
JavaScript, Java Microbenchmark Harness 
for Java or ‘timeit’ for Python to minimise 
measurement overhead.

	■ Analyse in context: Use micro 
benchmarking in conjunction with profiling 
and macro-level performance testing to get a 
holistic view of performance.  

The last one is one of the most tricky as 
performance and efficiency are not always the 
same. You need to look into the underlying 
execution to determine the efficiency. 

To give some context there is the Processor Iron 
Law.

The Processor Iron Law is a principle in 
computer architecture that describes the trade-
off between execution time, the number of 
instructions executed, and the clock cycle time (or 
how fast instructions are processed). It states that 
the execution time of a program is determined 
by three factors: the number of instructions 
executed, the average number of clock cycles 
required per instruction (CPI), and the clock cycle 
time. Mathematically, it’s expressed as:

Execution Time = Instructions × CPI × Clock 
Cycle Time

This law highlights that improving overall 
execution time typically involves optimising one 
or more of these variables. For example, reducing 
the number of instructions by using more efficient 
algorithms, decreasing CPI through better 
instruction scheduling or pipelining, or decreasing 
the clock cycle time by using faster processors 
can all lead to faster program execution. However, 
changes in one area can affect the others, making 
it crucial to balance these factors when designing 
or optimising a system.
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Hardware performance monitoring unit (PMU) 
counters

Luckly, there are hardware performance 
monitoring unit (PMU) counters which are 
specialised registers provided by modern CPUs 
that track various low-level hardware events, 
such as cache misses, branch mispredictions, 
and instruction counts. They are invaluable for 
understanding the underlying performance 
characteristics of code, especially in the context of 
micro benchmarking. A good micro benchmarking 
tool will collect and present PMU counters.

Key PMU Metrics will measure: 

	■ Instruction count: Track the number 
of instructions executed to understand the 
efficiency of the code. The fewer instructions, 
the better. 

	■ Cache usage: Monitor cache hits and 
misses to identify memory access patterns 
and locality issues. Maximising cache hits will 
improve efficiency, but beware: this behaviour 
will dramatically change in a production 
system with multiple code paths running.

	■ Branch performance: Use branch 
prediction counters to see if the code is 
causing frequent mispredictions. The less 
misprediction, the better. 

	■ Stalls and pipeline issues: Measure stalls 
(e.g., memory stalls, instruction fetch stalls) to 
see if the CPU pipeline is effectively utilised. 

Running different micro benchmarks allows you 
to see the impact of the hardware and helps you 
make decisions about optimal code choice.

A software developer micro benchmarked 
several versions of their new function. 
Ignoring the PMU counters they chose the 
fastest. However, this was less efficient than 
other options and led to additional costs in 
the cloud.

Be driven by measurement, but make sure 
what you measure is representative of real-
world scenarios.

Cautionary Tale Golden Rule 
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Chapter 10 
Checking You Got It Right? You Won’t 
“The streetlight effect occurs when people only search for something where it 
is easiest to look.” 

- David H. Freedman

When trying to identify areas to optimise in 
cloud-based systems, the primary challenge is 
achieving visibility into the various components 
to determine if they are running efficiently. This 
is where observability and cloud monitoring 
tools play a critical role. These tools provide 
insights into resource utilisation, performance 
bottlenecks, and application behaviour, allowing 
you to spot inefficiencies.

One approach to resource optimisation is to 
ensure that your cloud resources are operating 
within the “Goldilocks Zone” — not over-utilised to 
the point where response times are impacted and 
not underutilised, leading to unnecessary costs. If 
you remember the graphic in Chapter 3, it shows 
how response time drastically degrades after 70%- 
80%. For instance, you can monitor CPU, memory, 
and I/O to ensure that the resources are not being 
throttled or sitting idle.

However, merely having a resource at an ideal 
utilisation level is only the initial step in achieving 
efficiency. The next phase involves verifying that 
the software executing on those resources is 
configured and behaving in an optimal manner. 
Just think; a poorly written, inefficient code will 
use a lot of computing resources. This can be a 
complex process because even if the hardware 
utilisation appears to be balanced, inefficiencies 
in code execution, suboptimal algorithms, or 
improper configurations can lead to hidden 
performance and cost inefficiencies.
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Using flame graphs to detect CPU usage and 
pinpoint optimisation areas

Flame graphs are a powerful visualisation tool that can help detect inefficiencies at the CPU level. They provide 
a detailed view of where time is being spent in your code, making it easier to identify performance bottlenecks, 
hotspots, or sections of the code that may need optimisation. By visualising CPU activity, flame graphs can 
show you if certain functions or threads are over-utilising CPU resources, potentially leading to performance 
degradation.

For example, flame graphs allow you to see which functions are consuming the most CPU time, indicating areas 
where code improvements can yield significant gains. This makes it easier to focus optimisation efforts where 
they will have the most impact, such as optimising or re-writing specific algorithms, minimising I/O wait times, or 
parallelising operations to distribute the load more effectively.
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Importance of cost allocation and tagging

In addition to optimising performance, managing 
cloud costs is equally crucial for efficient 
cloud operations. Cost allocation and tagging 
are fundamental practices that enable you 
to understand and manage cloud expenses 
effectively. Tagging resources is akin to labelling 
expenses in a budget. By tagging resources with 
metadata such as project names, department 
codes, or environment identifiers (e.g., “dev” or 
“prod”), you gain the ability to track costs, identify 
spending patterns, and ensure accountability 
within your organisation.

Ideally, proper tagging should enable the 
calculation of **cost per transaction**. This 
requires a clear understanding of both resource 
usage and demand. For instance, by tagging 
resources based on different transaction types or 
services, you can attribute costs to the number 
of transactions processed. This approach allows 
you to monitor costs relative to business activity 

and ensure that expenses are proportional to 
transaction volumes. Without consistent and 
meaningful tagging, it becomes challenging to 
measure efficiency, as you cannot correlate usage 
with transaction counts.
By achieving cost-per-transaction visibility, 
organisations can make informed decisions 
on resource allocation, identify opportunities 
to optimise specific transactions, and forecast 
costs more accurately. Ultimately, this level of 
granularity provides transparency into cloud 
expenses and allows for better resource and 
budget management.

In summary, achieving cloud optimisation 
requires a holistic approach that combines 
resource observability, performance analysis 
using tools like flame graphs, and robust cost 
management through tagging. These practices 
ensure that your cloud infrastructure is not only 
performing optimally but is also cost-effective.

A company did not have full coverage of 
monitoring their application in production. 
Without this, they often increased capacity 
(wasted costs) to avoid performance issues 
rather than solving the root cause of the 
performance issue. 

You can only effectively manage what you 
can monitor.

Cautionary Tale Golden Rule 
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Chapter 11 
What About the Soft Costs? 

“Time is the scarcest resource, and unless it is managed, nothing else can be 
managed.”

– Peter Drucker

If you’re working in the cloud, transitioning 
to the DevOps methodology is essential. The 
primary goal of DevOps is to improve product 
delivery quality by facilitating fast, end-to-end 
development cycles. This allows teams to deliver 
high-quality products rapidly while offering value 
for money. However, it’s easy to lose sight of costs 
during this shift and, without proper oversight, 
you can accumulate significant expenses when 
implementing DevOps.

DevOps teams must prioritise cost efficiency. 
The mindset of the team should inherently include 
cost management to ensure sustainable growth 
and operational agility. Designing and deploying 
solutions with cost efficiency at their core will 
enable teams to optimise resource usage, reduce 
unnecessary operational expenses, and ultimately 
improve the return on investment. Cost efficiency 
is key to developing scalable, robust, and 
financially sustainable DevOps practices.



41

Chapter 11 
What About the Soft Costs? 

Automating environment builds

Reducing human support costs

Cloud provider agnosticism

DevOps encourages the maximisation of 
automation tools, particularly for infrastructure 
provisioning. Managing cloud applications is 
a significant cost and automation is critical to 
easing this burden. Tools such as Infrastructure 
as Code (IaC) enable the definition and 
provisioning of cloud infrastructure using code. 

Your application architecture can benefit greatly 
by offloading operational responsibilities to 
managed platforms and services. These non-
differentiated workloads are tasks that do not 
give your business a competitive advantage but 
are necessary for operations. Examples include 
databases, message queues, or content delivery 
networks (CDNs). These services are critical but 
do not differentiate your product from others in 
the market. By using managed platforms for these 
workloads, you free up your team to focus on core 
business innovations. 

Examples of cloud services that manage  

Adopting a hybrid or multi-cloud strategy can 
be a cost-effective approach, particularly if you 
remain cloud provider agnostic. This means 
that your systems are designed to run on any 
cloud provider, allowing you to choose vendors 
based on specific service costs or features. Often, 
smaller vendors specialise in niche services — 
such as storage or content delivery — and may 
offer cheaper alternatives compared to major 
cloud providers like AWS, Azure, or Google Cloud.

However, there are scenarios where sticking 
with a single cloud provider is advantageous. 
For example, if your application heavily relies on 
proprietary services like Amazon Lambda (for 
serverless computing) or Azure Cosmos DB (for 
globally distributed databases), using a single 

IaC allows teams to replicate environments, 
track changes, and roll back configurations 
seamlessly, streamlining operations. For instance, 
teams can use IaC to create test environments 
that mirror production, spinning them up only 
when necessary. This reduces both operational 
complexity and cost.

non-differentiated workloads include:
	■ Amazon RDS (Relational Database 

Service) or Google Cloud SQL for database 
management 

	■ Amazon SQS (Simple Queue Service) or 
Azure Queue Storage for message queuing 

	■ Amazon CloudFront or Azure CDN for 
content delivery

By utilising such services, you reduce human 
intervention, streamline operations, and minimise 
the cost associated with managing infrastructure 
manually.

provider can streamline integration, simplify 
billing, and improve performance. Additionally, 
single-cloud solutions can enhance security 
through tighter controls and native support for 
regulatory compliance in certain industries.

In essence, cloud provider agnosticism offers 
flexibility and cost advantages, but in cases 
where deep integration with specific services or 
performance optimisation is crucial, relying on 
a single provider may provide a more seamless 
experience.
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Implementing self-healing systems

Instrumentation from the start

Remember to balance maintainability vs 
optimised code

Building self-healing and self-remediating cloud 
applications ensures resilience and minimises 
downtime. Automating the detection and 
resolution of common issues allows systems 

Instrumentation is essential for observability 
and continuous integration/continuous delivery 
(CI/CD) pipelines. Integrating instrumentation 
directly into the application from the beginning 

One common argument against heavy 
optimisation is the increased maintenance 
burden it may impose. However, not every line 
of code needs to be optimised for maximum 
efficiency. Focusing optimisation efforts 
only on cost-critical components is crucial to 
striking a balance between optimisation and 
maintainability.

Maintainable code should follow clean code 
principles, ensuring readability, modularity, 
and scalability. Clean code is easier to manage, 
debug, and extend, which reduces long-term 
maintenance costs. Moreover, managing 
cognitive complexity — the ease with which 

to automatically recover from failures or 
performance degradation. Using cloud-native 
tools, you can design applications that respond 
autonomously to incidents, maintaining 
operational continuity.

can reduce the need for expensive external 
monitoring solutions or sidecar containers. 
However, it’s important to consider the storage 
and overhead requirements associated with the 
logging generated by your application.

someone can understand the code — is vital. 
Excessive optimisation often results in convoluted 
code that’s difficult to understand and maintain. 
Code with low cognitive complexity is simpler to 
manage and less prone to errors.

In summary, it’s important to be agile as an 
organisation. Know when to prioritise efficiency 
and when to prioritise maintainability. Optimising 
only where necessary while adhering to clean 
code principles will ensure that your systems 
remain cost-effective, scalable, and easy to 
maintain over time.

Optimised code is great unless the support 
team is debugging it at two in the morning 
as part of a critical incident. Be clever but 
remember to comment!

 Take a holistic approach to costs!

Cautionary Tale Golden Rule 
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Chapter 12 
Making It Stick

“Change is not just about adopting new strategies but creating a culture that 
sustains your purpose and vision for the long-term.”

— John P. Kotter

This chapter takes it lead from Dr Manzoor 
Mohammed, Cloud Cost Optimisation A more 
thoughtful approach download

A well-defined strategy focused on cost 
optimisation is essential for becoming a cost-
efficient organisation.

The approach centres around sustainable 
cost optimisation by analysing historical data, 

embedding efficient practices, and predicting 
future spending trends. Here at Capacitas, we 
base our methodology on the “Frugal Architect’s” 
approach to software development, introduced by 
Werner Vogels, CTO at Amazon. 

Our aim is to help organisations solve the problem 
of spiralling cloud costs, accelerate development, 
and harness the full potential of the cloud.

https://hs.capacitas.co.uk/cloud-cost-optimisation-a-more-thoughtful-approach
https://hs.capacitas.co.uk/cloud-cost-optimisation-a-more-thoughtful-approach
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1. Awareness

It’s crucial that teams understand how much 
they’re spending on cloud services in relation 
to the overall IT budget. Focusing on spend as 
a portion of the IT budget provides a clearer 
picture, avoiding the false sense of efficiency that 
might arise from comparing it to overall business 
revenue. Teams should have visibility into past 
spending patterns and the ability to forecast 
future costs.

Beyond a high-level overview, engineers should 
understand how their services contribute to 
the total cloud budget and how their decisions 
impact service performance and reliability. This 
awareness helps teams more effectively leverage 
cloud cost management tools like Cloudability, 
CloudHealth, AWS Cost Explorer, and Azure Cost 
Management.

2. Prioritisation and time management

Teams must prioritise cloud cost optimisation 
activities, such as reducing unnecessary capacity 
or eliminating non-impactful costs. These 
activities should be integrated into sprint cycles 
or have dedicated cycles to ensure continuous 
focus. Housekeeping activities, often overlooked, 
are vital for understanding cloud costs and 
maintaining efficient operations.

3. Observability

Visibility into cost, performance, and utilisation 
data over both the short and long term is 
essential. This visibility reflects a team’s 
confidence and understanding of their systems. 
For example, less confident teams might log 
everything, keep data longer than necessary, or 
rely heavily on logs instead of metrics, all of which 
can increase costs.

Teams should consider three key areas:

	■ Tagging: Properly tag cloud systems to 
track cost ownership.

	■ Metrics vs. Logs: Use metrics for easier 
analysis and reduced costs.

	■ Granularity and Data Retention: Maintain 
appropriate data granularity — one-minute for 
system data and one-hour for cost data.

4. Understanding

Teams need to understand how cloud costs 
relate to their services. They should be able to 
quantify and articulate the business drivers of 
capacity utilisation, cost, and performance. This 
understanding is particularly vital for data-driven 
workloads, where costs might increase more 
rapidly than revenue growth.

5. Confidence

Teams must have  confidence in their ability to 
adjust cloud infrastructure without compromising 
service reliability. Excess capacity often stems 
from a lack of confidence in system reliability. 
By increasing confidence, teams can eliminate 
unnecessary capacity and deliver quality code 
faster.

6. Product Value

A strong grasp of the product’s value to users 
and the business is key to controlling costs. Align 
business and engineering teams on the required 
performance levels and determine the relevance 
and obsolescence of product features to manage 
costs effectively.

7. Predictability

Teams should have a long-term view of cloud 
spend, predicting costs over the next three years 
based on business demand. This predictability 
aids in negotiating commitments with cloud 
providers and enables better conversations about 
the value delivered by cloud services.

These seven principles form the foundation of our 
thoughtful approach to cloud cost optimisation, 
helping our clients achieve long-term value from 
their cloud investments while minimising costs 
and enhancing performance. 
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Remember, the cloud is still just offering compute 
power, but now you can rent that by the second! 
Or rent nothing when you don’t need it. 

The cloud is a great opportunity to drive down 
your organisation’s costs. However, it is like 
having children: great fun but not always easy 
to get right and sometimes they will drive you to 
tears. (Some may be happy tears, others not!). 

You have a lot to consider in any software project 
with many competing demands with added cost 
and time pressure. However, if you are going to 
realise the benefits and the ultimate cost saving in 
the cloud you need to design for cost at the very 
beginning.

Hopefully, this white paper will help you achieve 
this. You also have to remember everything is 
proportional this means not every line of code 
needs to be optimised. Not every subcomponent 
needs to be trimmed to the bone. The trick is 
setting off on the right path, making changes 
along the way and focusing on the components 
that will cost the most to run. Remain agile at all 
times.

Good luck

Andrew Lee

Andrew Lee is a highly  
experienced Performance  
Engineer with over 30 years of  
expertise in load testing, system modelling,  
cost optimisation and capacity planning on  
large-scale IT projects. 
 
For the past 2.5 years at Capacitas, Andrew 
has helped customers meet their performance 
goals and reduce their cloud costs. Previously 
he was a distinguished engineer for a large 
international service provider working for 
customers across the global.  

Andrew’s deep technical expertise spans a 
range of performance engineering disciplines, 
from strategy and management to diagnostics 
and testing. He is adept at using a variety of 
industry-leading tools to identify bottlenecks, 
optimize system performance, and provide 
actionable insights.

With a proven track record in performance 
engineering, Andrew is passionate about driving 
efficiency, ensuring system resilience, and 
helping organizations achieve high-performing, 
cost effective scalable IT solutions. He often 
posts on linkedIn www.linkedin.com/in/
andrewjohnlee/

A company struggling with cloud costs 
decided to incentivise its development 
and platform team to save costs. They ran 
a competition between the teams, and the 
team that saved the highest percentage won 
a vacation to Hawaii. The initial savings were 
fantastic, but after the competition ended, 
they grew rapidly as the teams waited for the 
next competition!

There is no silver bullet. For long-term, 
sustained cost savings and control, embed 
cost-efficiency into the company’s psyche.

Cautionary Tale Golden Rule 

http://www.linkedin.com/in/andrewjohnlee/
http://www.linkedin.com/in/andrewjohnlee/
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